基于VTPR方程计算N2/CF3I充填特性
收稿日期: 2016-01-08
修回日期: 2016-03-02
网络出版日期: 2016-03-04
Calculating filling properties for N2/CF3I based on volume translation Peng-Robinson equation
Received date: 2016-01-08
Revised date: 2016-03-02
Online published: 2016-03-04
采用比容平移法修正原始的Peng-Robinson状态(VTPR)方程,提高三氟碘甲烷(CF3I)液相饱和区密度的计算精度。基于VTPR方程,结合经典的范德瓦尔混合规则,计算了N2作为增压介质时,CF3I充填1/2灭火瓶和2/3灭火瓶所需的N2质量,并与试验值和文献值进行对比。结果表明,不同充填工况的计算值与试验值基本吻合,并且优于PROFISSY软件的结果。获得了充填压力分别为2.5 MPa和4.2 MPa、CF3I不同充填密度下的总压力与温度的关系式,并计算了灭火剂热膨胀充满灭火瓶的临界温度和临界压力,该压力-温度关系式可用于以CF3I为灭火剂的机载灭火系统工程设计。
关键词: 灭火瓶; VTPR方程; 三氟碘甲烷(CF3I); 气液平衡; 充填特性
陈梦东 , 余建祖 , 谢永奇 . 基于VTPR方程计算N2/CF3I充填特性[J]. 航空学报, 2016 , 37(12) : 3706 -3712 . DOI: 10.7527/S1000-6893.2016.0062
The volume translation method is used to correct the original Peng-Robinson state (VTPR) equation for representing the density of trifluoroiodomethane (CF3I) in the saturated region. Based on VTPR equation associated with the classical van der Waals mixing rule, the mass of N2 required to pressurize CF3I is calculated. For the case of filling one-half and two thirds of extinguisher, the results show that calculated mass of N2 agrees well with the experimental data and it is better than the values of PROFISSY software. With different filling density of CF3I, the relationship of total pressure versus temperature is obtained when the super-pressurized pressure are 2.5 MPa and 4.2 MPa. Besides, the critical pressure and critical temperature are also acquired when the fire agent bottle is liquid-full. The relationship of pressure versus temperature for the agent of CF3I will help to design fire suppression system in aircraft.
[1] 银未宏, 于水, 唐宏刚. 民用飞机防火设计要求研究[J]. 民用飞机设计与研究, 2014(2):1-13. YIN W H, YU S, TANG H G. Research on fire prevention design requirements for civil aircraft[J]. Civil Aircraft Design & Research, 2014(2):1-13(in Chinese).
[2] HARRINGTON J L. The halon phaseout speeds up[J]. NFPA Journal, 1993, 87(2):38-42.
[3] GANN R G. Next-generation fire suppression technology program[J]. Fire Technology, 1998, 34(4):363-371.
[4] GANN R G. FY2002 annual report:Next generation fire suppression technology program (NGP)[M]. Washington, D.C.:National Institute of Standards and Technology, 2001:1-29.
[5] GANN R G. Advanced technology for fire suppression in aircraft:NIST Special Publication 1069[R]. Gaithersburg:National Institute of Standards and Technology, 2007.
[6] BORGHHETTI L, CHAER S, FERGUSON D, et al. Options for aircraft engine fire protection[R]. WA:International Aircraft System Fire Protection Working Group, 2000.
[7] TUZLA K, PALMER T, CHEN J C, et al. Development of computer program for fire suppressant fluid flow[R]. Bethlehem, PA:Lehigh University, 1998.
[8] YANG J C, CLEARY T G, VÁZQUEZ I, et al. Fire suppression system performance of alternative agents in aircraft engine and dry bay laboratory simulations:NIST-SP-890[R]. Washington, D.C.:U.S. Department of Commerce, 1995.
[9] YANG J C, CLEARY T G, VÁZQUEZ I, et al. Measured and predicted thermodynamic properties of selected halon alternative/nitrogen mixtures[J]. International Journal of Refrigeration, 1997, 20(2):96-105.
[10] 李淑艳, 王新月, 卿雄杰, 等. 飞机/发动机灭火系统的设计与计算[J]. 西北工业大学学报, 2006, 24(1):124-127. LI S Y, WANG X Y, QIN X J, et al. An engineering method for extinguishing incipient aircraft/engine fire[J]. Journal of Northwestern Polytechnical University, 2006, 24(1):124-127(in Chinese).
[11] 郑友兰,金华,付金云.直升机灭火系统管路布局设计研究[J]. 直升机技术, 2009(2):47-51. ZHENG Y L, JIN H, FU J Y. A study on tube distribution design for helicopter fire extinguishing system[J]. Helicopter Technique, 2009(2):47-51(in Chinese).
[12] 牛雪民, 谢永奇, 余建祖. 无通风直升机动力舱火灾温度场数值模拟[J]. 航空动力学报, 2011, 26(8):1761-1767. NIU X M, XIE Y Q, YU J Z. Simulation study on helicopter nacelle ventilation cooling system[J]. Journal of Aerospace Power, 2011, 26(8):1761-1767(in Chinese).
[13] YANG J, BREUEL B. Thermodynamic properties of alternative agents:NIST Special Publication 861[R]. Gaithersburg:Building and Fire Research Laboratory, 1994.
[14] MARTIN J J. Equations of state-Applied thermodynamics symposium[J]. Industrial & Engineering Chemistry, 1967, 59(12):34-52.
[15] PÉNELOUX A, RAUZY E, FRÉZE R. A consistent correction for Redlich-Kwong-Soave volumes[J]. Fluid Phase Equilibria, 1982, 8(1):7-23.
[16] 段远源, 林鸿. 比容平移法修正立方型状态方程[J]. 化工学报, 2006, 57(s):21-26. DUAN Y Y, LIN H. Modified cubic equations of state by bolume translation method[J]. Journal of Chemical Industry and Engineering, 2006, 57(s):21-26(in Chinese).
[17] LIN H, DUAN Y Y. Empirical correction to the Peng-Robinson equation of state for the saturated region[J]. Fluid Phase Equilibria, 2005, 233(2):194-203.
[18] NASIR Q, SABIL K M, LAU K K. Measurement of isothermal (vapor+ liquid) equilibria,(VLE) for binary (CH4+ CO2) from T=(240.35 to 293.15) K and CO2 rich synthetic natural gas systems from T=(248.15 to 279.15) K[J]. Journal of Natural Gas Science and Engineering, 2015, 27(1):158-167.
[19] LUIS A F G, JORGE A V J. A generalized cubic equation of state for non-polar and polar substance[J]. Fluid Phase Equilibria, 2016, 418:74-87.
[20] LEMMON E W, MCLINDEN M O, HUBER M L. NIST reference fluid thermodynamic and transport properties (REFPROP), Version 8.0[S]. Gaithersburg, MD:National Institute of Standards and Technology, 2007.
[21] 段远源. 三氟碘甲烷和二氟甲烷的热物理性质研究[D]. 北京:清华大学, 1998. DUAN Y Y. Research on thermophysical properties of trifluoroiodomethane and difluoromethane[D]. Beijing:Tsinhua University, 1998(in Chinese).
[22] LIM J S, KIM J. Vapor liquid equilibria of the binary systems nitrogen+bromotrifluoromethane, bromochlorodifluoromethane, 1,1,1,2,3,3,3-heptafluoropropane, and+trifluoroiodomethane from 293.2 to 313.2 K and 30 to 100 bar[J]. Journal of Chemical and Engineering Data, 1997, 42(1):112-115.
[23] 陈梦东, 谢永奇, 郭祥祥, 等. PR方程和WS混合规则预测灭火瓶氮气充填量[J]. 北京航空航天大学学报, 2016, 42(10):2162-2168. CHENG M D, XIE Y Q, GUO X X, et al. Predicting filling mass of nitrogen in fire agent bottle based on Peng-Robinson equation of state with Wong-Sandler mixing rule[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(10):2162-2168(in Chinese).
/
〈 |
|
〉 |