电子与控制

拉普拉斯白噪声下的分组Turbo码

  • 党小宇 ,
  • 黄准 ,
  • 朱鲁军 ,
  • 虞湘宾 ,
  • 陈小敏
展开
  • 南京航空航天大学 电子信息工程学院, 南京 210016
党小宇,男,博士,教授,硕士生导师。主要研究方向:卫星导航、信道编码理论、深空通信、航空航天测控。Tel.:025-84892402,E-mail:dang@nuaa.edu.cn;黄准,男,硕士研究生。主要研究方向:信道编码理论、调制解调技术。E-mail:2702121416@qq.com;朱鲁军,男,硕士研究生。主要研究方向:调制解调技术、计算机网络。E-mail:zhulujuna@163.com

收稿日期: 2015-11-26

  修回日期: 2016-02-21

  网络出版日期: 2016-03-01

基金资助

国家自然科学基金(61172078、61571224、61571225);中央高校基本科研业务费(NS2014038);南京航空航天大学研究生创新基地(实验室)开放基金(kfjj20150404);教育部留学回国人员科研启动基金;江苏省六大人才高峰项目

Block Turbo code in white Laplacian noise

  • DANG Xiaoyu ,
  • HUANG Zhun ,
  • ZHU Lujun ,
  • YU Xiangbin ,
  • CHEN Xiaomin
Expand
  • College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2015-11-26

  Revised date: 2016-02-21

  Online published: 2016-03-01

Supported by

National Natural Science Foundation of China (61172078, 61571224, 61571225); Fundamental Research Funds for the Central Universities (NS2014038); Foundation of Graduate Innovation Center in NUAA (kfjj20150404); Scientific Research Foundation for the Returned Overseas Chinese Scholars of Ministry of Education of China; Six Talent Peaks Project in Jiangsu

摘要

目前,传统航空测控通信所采用的纠错码大多是建立在高斯信道基础上的。然而,航空测控环境中不可避免存在着多种尖锐的噪声,测控通信纠错码的可靠性能在非高斯信道中尚未得到充分的研究。分析了一类国际航空遥测的分组Turbo码(BTC)在拉普拉斯白噪声信道下的译码和性能。将传统Chase迭代译码算法引入到拉普拉斯白噪声信道中,建立相应的数学模型,同时,基于该数学模型设计了3种不同的译码接收器下的BTC译码方案。仿真结果验证了该数学模型的正确性与可行性,在误码率为10-4时最佳译码方案相比于硬限幅接收机有3.7 dB的增益,相比原有的高斯信道下的接收机仅有0.6 dB的性能损失。

本文引用格式

党小宇 , 黄准 , 朱鲁军 , 虞湘宾 , 陈小敏 . 拉普拉斯白噪声下的分组Turbo码[J]. 航空学报, 2016 , 37(11) : 3494 -3501 . DOI: 10.7527/S1000-6893.2016.0050

Abstract

Recently, most error correcting codes used in aeronautical telemetry and control communication are based on white Gaussian channel. However, there are unavoidably multiple kinds of sharp noises in aeronautical measurement and control communication, and reliability of error correcting codes with non-Gaussian channel has not been fully studied. In this paper, the decoding and performance of the block Turbo code in white Laplacian channel is analyzed. The mathematical model is established by introducing conventional Chase iterative decoding algorithm to white Laplacian channel. At the same time, three kinds of BTC decoding schemes with different detectors are proposed. Simulation results verify the availability of the model. It is found that when the bit error rate is 10-4, the optimal detector provides 3.7 dB of gain compared with the hard limit detector in white Laplacian channel, and only 0.6 dB of performance loss in contrast with the traditional detector in white Gaussian channel.

参考文献

[1] BLACKARD K L, RAPPAPORT T S, BOSTIAN C W. Measurements and models of radio frequency noise for indoor wireless communications[J]. IEEE Journal on Selected Areas in Communications, 1993, 11(7):991-1001.
[2] BERNSTEIN S L, BURROWS M L, EVANS J E, et al. Long-range communications at extremely low frequencies[J]. Proceedings of the IEEE, 1974, 62(3):292-312.
[3] MARKS R J, WISE G L, HALDEMAN D G, et al. Detection in Laplace noise[J]. IEEE Transactions on Aerospace and Electronic Systems, 1978, 14(6):866-872.
[4] NING LU, EISENSTEIN B. Detection of weak signal in non-Gaussian noise[J]. IEEE Transactions on Information Theory, 1981, 27(6):755-771.
[5] BEAULIEU N C, YOUNG D J. Designing time-hopping ultrawide bandwidth receivers for multiuser interference environments[J]. Proceedings of the IEEE, 2009, 97(2):255-284.
[6] HU B, BEAULIEU N C. On characterizing multiple access interference in TH-UWB systems with impulsive noise models[C]//IEEE Radio and Wireless Symposium. Piscataway, NJ:IEEE Press, 2008:879-882.
[7] LI T H, SONG K S. Estimation of the parameters of sinusoidal signals in non-Gaussian noise[J]. IEEE Transactions on Signal Process, 2009, 57(1):62-72.
[8] BEAULIEU N C, JIANG S J. Data-aided and non-data-aided estimation of signal amplitude for binary data communication in Laplace noise[J]. IEEE Transactions on Communications, 2010, 58(8):2183-2187.
[9] JIANG S J, BEAULIEU N C. Precise BER computation for binary data detection in bandlimited white Laplace noise[J]. IEEE Transactions on Communications, 2011, 59(6):1570-1579.
[10] SHAO H, BEAULIEU N C. Block coding for impulsive Laplacian noise[C]//IEEE International Conference on Communications. Piscataway, NJ:IEEE Press, 2010:1-6.
[11] PYNDIAH R. Near-optimum decoding of product codes:block turbo codes[J]. IEEE Transactions on Communications, 1998, 46(8):1003-1010.
[12] 楼喜中, 毛志刚. Turbo码Log-MAP译码算法简化实现的研究[J]. 航空学报, 2005, 26(5):581-586. LOU X Z, MAO Z G. Study on the simplification of Log-MAP algorithm for turbo decoding[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(5):581-586(in Chinese).
[13] FONSEKA J P, DOWLING E M, BROWN T K, et al. Constrained interleaving of turbo product codes[J]. IEEE Communications Letters, 2012, 16(9):1365-1368.
[14] PYNDIAH R, GLAVIEUX A, PICART A, et al. Near optimum decoding of product codes[C]//IEEE GLOBECOM. Piscataway, NJ:IEEE Press, 1994:339-343.
[15] SOLEYMANI M R, GAO Y Z, VILAIPORNSAWAI U. Turbo coding for satellite and wireless communications[M]. New York:Springer, 2002:104-112.
[16] LU P, LU E, CHEN T. An efficient hybrid decoder for block turbo codes[J]. IEEE Communications Letters, 2014, 18(12):2077-2080.
[17] Range Commanders Council Document 106-11. Telemetry standard[S]. New Mexico:Range Commanders Council, 2011.
[18] 樊昌信, 曹丽娜. 通信原理[M]. 6版. 北京:国防工业出版社, 2012:311-318. FAN C X, CAO L N. Principle of communication[M]. 6th ed. Beijing:National Defense Industrial Press, 2012:311-318(in Chinese).
[19] VINCENT P H. An introduction to signal detection and estimation[M]. Berlin Heidelberg:Springer-Verlag, 1988:127-139.
[20] JOHN G P, MASOUD S. 数字通信[M]. 张力军等, 译. 5版. 北京:电子工业出版社, 2011:378-384. JOHN G P, MASOUD S. Digital Communications[M]. ZHANG L J translated. 5th ed. Beijing:Electronic Industry Press, 2011:378-384(in Chinese).
[21] DAVE S, KIM J, KWATRA S C. An efficient decoding algorithm for block turbo codes[J]. IEEE Transactions on Communications, 2001, 49(1):41-46.

文章导航

/