固体力学与飞行器总体设计

用于直升机舱内降噪的主减周期撑杆研究

  • 王风娇 ,
  • 陆洋
展开
  • 南京航空航天大学 直升机旋翼动力学国家级重点实验室, 南京 210016
王风娇,女,博士研究生。主要研究方向:直升机振动及噪声控制。Tel.:025-84893263,E-mail:aojiao1020@126.com;陆洋,男,博士,副教授。主要研究方向:电控旋翼、直升机振动及噪声控制。Tel.:025-84893263,E-mail:luyang@nuaa.edu.cn

收稿日期: 2015-12-01

  修回日期: 2016-02-19

  网络出版日期: 2016-03-01

基金资助

直升机旋翼动力学国家重点实验室基金(61422200402162220003)

Research on gearbox periodic strut for helicopter cabin noise reduction

  • WANG Fengjiao ,
  • LU Yang
Expand
  • National Key Laboratory of Science and Technology on Rotorcraft Aeromechanics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2015-12-01

  Revised date: 2016-02-19

  Online published: 2016-03-01

Supported by

Foundation of State Key Laboratory of Rotorcraft Aeromechanics (61422200402162220003)

摘要

主减速器齿轮啮合产生的中高频谐波振动是直升机舱内噪声的主要来源之一,通过抑制该振动向机体的传递可达到舱内降噪的目的。基于金属/橡胶周期结构,提出了一种适用于直升机舱内降噪的串/并联复合型主减周期撑杆,不仅具有宽频减振特性,而且能够满足直升机对撑杆的强度和刚度要求。为指导这种周期撑杆的设计,首先采用谱单元法建立了复合型主减周期撑杆的动力学模型,进一步建立了该周期撑杆的刚度和强度分析模型;在此基础上,分析得到了该周期结构的主要设计参数对减振特性、刚度及强度的影响规律;最后,以某轻型直升机为背景机设计了复合型主减周期撑杆,对其减振特性、刚度及强度特性进行了仿真研究,结果表明:所提出的设计方案可满足该直升机对主减撑杆的刚度和强度要求,且撑杆两端位移传递率在500~2 000 Hz频率范围内的最大振动衰减超过60 dB,验证了本文所提出复合型周期撑杆方案的可行性。

本文引用格式

王风娇 , 陆洋 . 用于直升机舱内降噪的主减周期撑杆研究[J]. 航空学报, 2016 , 37(11) : 3370 -3384 . DOI: 10.7527/S1000-6893.2016.0048

Abstract

High-frequency harmonic vibration generated by meshing gear pairs is a significant source of helicopter cabin noise, which can be controlled by suppressing the vibration transferred to the fuselage. A series/parallel complex gearbox periodic strut for helicopter interior noise reduction is brought forward in this paper. The periodic strut exhibits good ability of broadband vibration attenuation, and can satisfy the intensity and stiffness required by the helicopter. A dynamical model is established based on spectral finite element method. The stiffness and intensity analysis models are then developed based on experiential formula. The effects of the main design parameters are obtained. A complex gearbox periodic strut is designed for a certain light helicopter. The simulation results show that the complex gearbox periodic strut proposed can meet the required intensity and stiffness. In addition, the maximum displacement transmissibility from one side to the other side of the strut exceeds 60 dB in the frequency range from 500 to 2 000 Hz, verifying the feasibility of the strut.

参考文献

[1] 虞汉文, 孙东红, 李明强, 等. 直升机舱内降噪技术研究[J]. 直升机技术, 2012(4):38-44. YU H W, SUN D H, LI M Q, et al. Cabin noise control process of a helicopter[J]. Helicopter Technique, 2012(4):38-44(in Chinese).
[2] SZEFI J T. Helicopter gearbox isolation using periodically layered fluidic isolators[D]. Park, PA:The Pennsylvania State University, 2003:2.
[3] MILLOTT T A, WELSH W A, YOERKIE C A, et al. Flight test of active gear-mesh noise control on the S-76 aircraft[C]//54th Annual Forum of the American Helicopter Society. Fairfax, VA:American Helicopter Society, 1998, 54:241-250.
[4] SUTTON T J, ELLIOTT S J, BRENNAN M J. Active isolation of multiple structural waves on a helicopter gearbox support strut[J]. Journal of Sound and Vibration, 1997, 205(1):81-101.
[5] MAIER R, HOFFMANN F, TEWES S, et al. Active vibration isolation system for helicopter interior noise reduction[C]//8th AIAA/CEAS Aeroacoustics Conference. Reston:AIAA, 2002:1-10.
[6] HOFFMANN F, MAIER R, JANKER P, et al. Helicopter interior noise reduction by using active gearbox struts[C]//12th AIAA/CEAS Aeroacoustics Conference. Reston:AIAA, 2006:1-10.
[7] O'CONNELL J M, MATHUR G P, JANAKIRAM R, et al. Helicopter cabin noise reduction using active structural acoustic control[C]//57th Annual Forum of the American Helicopter Society. Fairfax, VA:American Helicopter Society, 2001:93-100.
[8] MATHUR G P, O'CONNELL J M, JANAKIRAM R, et al. Analytical and experimental evaluation of active structural acoustic control (ASAC) of helicopter cabin noise[C]//40th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2002:1-7.
[9] 陈克安. 有源噪声控制[M]. 北京:国防工业出版社, 2003:12. CHEN K A. Active noise control[M]. Beijing:National Defence Industry Press, 2003:12(in Chinese).
[10] ASIRI S, BAZ A, PINES D. Periodic struts for gearbox support system[J]. Journal of Vibration and Control, 2005, 11(6):709-721.
[11] SINGH A, PINES D, BAZ A. Active/passive reduction of vibration of periodic one-dimensional structures using piezoelectric actuators[J]. Smart Mater Struct, 2004, 13:698-711.
[12] SZEFI J T, SMITH E C, LESIEUTRE G A. Analysis and design of high frequency periodically layered isolators in compression[C]//41th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. Reston:AIAA, 2000:1-16.
[13] SZEFI J T, SMITH E C, LESIEUTRE G A. Formulation and validation of a Ritz-based analytical model for design of periodically-layered isolators in compression[C]//42th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. Reston:AIAA, 2001:1-15.
[14] SZEFI J T, SMITH E C, LESIEUTRE G A. Design and analysis of high-frequency periodically layered isolators for helicopter gearbox isolation[C]//44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. Reston:AIAA, 2003:1-14.
[15] SZEFI J T, SMITH E C, LESIEUTRE G A. Design and testing of a compact layered isolator for highfrequency helicopter gearbox isolation[C]//45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. Reston:AIAA, 2004:1-13.
[16] 刘文光, 韩强, 杨巧荣, 等. 建筑橡胶支座拉伸性能的计算模型与评价准则[J]. 沈阳建筑大学学报(自然科学版), 2005, 21(5):499-502. LIU W G, HAN Q, YANG Q R, et al. Computation model and value criterion of the tension property for ribber bearings[J]. Journal of Shenyang Jianzhu University (Natural Science), 2005, 21(5):499-502(in Chinese).
[17] DOYLE J F. 结构中波的传播[M]. 吴斌, 何存富, 焦敬品, 等, 译. 北京:科学出版社, 2011:132-135. DOYLE J F. Wave propagation in structures[M]. WU B, HE C F, JIAO J P, et al., translated. Beijing:Science Press, 2011:132-135(in Chinese).
[18] 林孔勇, 金晟娟, 梁星宇. 橡胶工业手册:工业橡胶制品[M]. 北京:化学工业出版社, 1993:207. LIN K Y, JIN S J, LIANG X Y. Handbook of rubber industry:Industrial rubber products[M]. Beijing:Chemical Industry Press, 1993:207(in Chinese).
[19] 刘棣华. 粘弹性阻尼减振降噪应用技术[M]. 北京:宇航出版社, 1990:193, 197. LIU L H. Viscoelastic damping on the vibration damping and noise reduction technology[M]. Beijing:Astronautic Publishing House, 1990:193, 197(in Chinese).
[20] 严济宽. 机械振动隔离技术[M]. 上海:上海科学技术文献出版社, 1985:279. YAN J K. Mechanical vibration isolation technology[M]. Shanghai:Shanghai Science and Technology Literature Press, 1985:279(in Chinese).
[21] 成大先. 机械设计手册:第1卷[M]. 5版. 北京:化学工业出版社, 2007:3-292. CHENG D X. Handbook of mechanical design:Vol.1[M]. 5th ed. Beijing:Chemical Industry Press, 2007:3-292(in Chinese).

文章导航

/