固体力学与飞行器总体设计

高超声速飞行器热环境与结构传热的多场耦合数值研究

  • 周印佳 ,
  • 孟松鹤 ,
  • 解维华 ,
  • 杨强
展开
  • 哈尔滨工业大学 复合材料与结构研究所, 哈尔滨 150080
周印佳 男, 博士研究生。主要研究方向:高超声速气动热与热防护、高超声速多物理场耦合。 Tel.: 0451-86402432 E-mail: 12B918024@hit.edu.cn

收稿日期: 2015-09-08

  修回日期: 2015-11-22

  网络出版日期: 2016-02-23

基金资助

国家自然科学基金(11272107);国家“973”计划(2015CB655200)

Multi-field coupling numerical analysis of aerothermal environment and structural heat transfer of hypersonic vehicles

  • ZHOU Yinjia ,
  • MENG Songhe ,
  • XIE Weihua ,
  • YANG Qiang
Expand
  • Center for Composite Materials, Harbin Institute of Technology, Harbin 150080, China

Received date: 2015-09-08

  Revised date: 2015-11-22

  Online published: 2016-02-23

Supported by

National Natural Science Foundation of China (11272107); National Basic Research Program of China (2015CB655200)

摘要

为了准确预测高超声速飞行器面临的严峻气动热/力环境以及结构的热力响应,发展了高超声速流动与结构传热耦合框架。采用分区求解方法,通过耦合界面的实时数据传递,实现了基于Navier-Stokes方程的高超声速化学非平衡计算流体力学(CFD)求解器与结构的热力全耦合有限元法(FEM)求解器的多场耦合计算,建立了高超声速飞行器的多场耦合数值分析方法。首先对经典高超声速圆柱绕流实验进行了耦合计算,结果与实验值吻合良好。然后针对典型的超高温陶瓷(UHTC)材料的耦合传热问题进行了数值研究,考虑热传导效应对气动热环境和结构热响应预测的影响,结果表明对于复杂外形且热导率相对较高的UHTC材料,结构内部热传导对热环境和表面温度分布的影响不可忽略。最后针对UHTC材料热物性(比热和热导率)非线性对高超声速流动传热过程的影响进行了研究,结果表明当比热和热导率处于合理的误差范围内时,材料表面温度响应对其变化并不敏感。

本文引用格式

周印佳 , 孟松鹤 , 解维华 , 杨强 . 高超声速飞行器热环境与结构传热的多场耦合数值研究[J]. 航空学报, 2016 , 37(9) : 2739 -2748 . DOI: 10.7527/S1000-6893.2016.0040

Abstract

A coupling framework of hypersonic flow, heat transfer and structural response is presented in this paper in order to accurately predict aerodynamic environment, extreme aerothermal environment, as well as thermal and structural response for hypersonic flight. Multi-field coupling analysis is implemented in conjunction with the hypersonic chemical non-equilibrium computational fluid dynamics (CFD) solver and the fully coupled thermo-structural finite element method (FEM) solver by using partition algorithm, with a real time data exchange between non-matched meshes. This coupling method is validated by comparison with the experiment of a turbulent flow over a circular cylinder and good agreements with experiment are achieved. Coupling analysis of ultra high temperature ceramics (UHTC) is also conducted, and the effects of thermal conductivity on the prediction of aerothermal environment and structural thermal response have been considered. The results show that the effects of structural internal heat conduction on aerothermal environment and surface temperature distribution cannot be neglected for a structure with high thermal conductivity and complex geometry. At last, the effects of non-linear thermophysical properties (specific heat and thermal conductivity) of UHTC on hypersonic flow and heat transfer process have been studied. The results show that the surface temperature of structure is not sensitive to thermal conductivity and specific heat when thermal conductivity and specific heat are in a limit of allowable error.

参考文献

[1] 彭治雨, 石义雷, 龚红明, 等. 高超声速气动热预测技术及发展趋势[J]. 航空学报, 2015, 36(1): 325-345. PENG Z Y, SHI Y L, GONG H M, et al. Hypersonic aeroheating prediction technique and its trend of development[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 325-345 (in Chinese).
[2] WIETING A R. Experimental study of shock wave interference heating on a cylindrical leading edge: NASA-TM-100484[R]. Washington, D.C.: NASA, 1987.
[3] WIETING A R, HOLDEN M S. Experimental study of shock wave interference heating on a cylindrical leading edge at Mach 6 and 8: AIAA-1987-1511[R]. Reston: AIAA, 1987.
[4] THORNTON E A, DECHAUMPHAI P. Finite element prediction of aerothermal-structural interaction of aerodynamically heated panels: AIAA-1987-1610[R]. Reston: AIAA, 1987.
[5] DECHAUMPHAI P, THORNTON E A, WIETING A R. Flow-thermal-structural study of aerodynamically heated leading edges[J]. Journal of Spacecraft and Rockets, 1989, 26(4): 201-209.
[6] LOEHNER R, YANG C, CEBRAL J, et al. Fluid-structure-thermal interaction using a loose coupling algorithm and adaptive unstructured grids: AIAA-1998-2419[R]. Reston: AIAA, 1998.
[7] MILLER B A, CROWELL A R, MCNAMARA J J. Loosely coupled time-marching of fluid-thermal-structural interactions: AIAA-2013-1666[R]. Reston: AIAA, 1998.
[8] 黄唐, 毛国良, 姜贵庆, 等. 二维流场、热、结构一体化数值模拟[J]. 空气动力学学报, 2000, 18(1): 115-119. HUANG T, MAO G L, JIANG G Q, et al. Two dimensional coupled flow-thermal structural numerical simulation[J]. Acta Aerodynamica Sinica, 2000, 18(1): 115-119 (in Chinese).
[9] 夏刚, 刘新建, 程文科, 等. 钝体高超声速气动加热与结构热传递耦合的数值计算[J]. 国防科技大学学报, 2003, 25(1): 35-39. XIA G, LIU X J, CHENG W K, et al. Numerical simulation of coupled aeroheating and solid heat penetration for a hypersonic blunt body[J]. Journal of National University of Defense Technology, 2003, 25(1): 35-39 (in Chinese).
[10] 桂业伟, 袁湘江. 类前缘防热层流场与热响应耦合计算研究[J]. 工程热物理学报, 2002, 23(6): 733-735. GUI Y W, YUAN X J. Numerical simulation on the coupling phenomena of aerodynamic heating with thermal response in the region of the leading edge[J]. Journal of Engineering Thermophysics, 2002, 23(6): 733-735 (in Chinese).
[11] 耿湘人, 张涵信, 沈清, 等. 高速飞行器流场和固体结构温度场一体化计算新方法的初步研究[J]. 空气动力学学报, 2002, 20(4): 422-427. GENG X R, ZHANG H X, SHEN Q, et al. Study on an integrated algorithm for the flowfields of high speed vehicles and the heat transfer in solid structures[J]. Acta Aerodynamica Sinica, 2002, 20(4): 422-427 (in Chinese).
[12] ZHAO X L, SUN Z X, TANG L S, et al.Coupled flow-thermal-structural analysis of hypersonic aerodynamically heated cylindrical leading edge[J]. Engineering Applications of Computational Fluid Mechanics, 2011, 5(2): 170-179.
[13] 张兵, 韩景龙. 多场耦合计算平台与高超声速热防护结构传热问题研究[J]. 航空学报, 2011, 32(3): 400-409. ZHANG B, HAN J L. Multi-field coupled computing platform and thermal transfer of hypersonic thermal protection structures[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(3): 400-409 (in Chinese).
[14] ZHANG S T, CHEN F, LIU H. Integrated fluid-thermal-structural analysis for predicting aerothermal environment of hypersonic vehicles: AIAA-2014-1394[R]. Reston: AIAA, 2014.
[15] 董维中, 高铁锁, 丁明松, 等. 高超声速飞行器表面温度分布与气动热耦合数值研究[J]. 航空学报, 2015, 36(1): 311-324. DONG W Z, GAO T S, DING M S, et al. Numerical study of coupled surface temperature distribution and aerodynamic heat for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 311-324 (in Chinese).
[16] SILBERBERG M. Chemistry: The molecular nature of matter and change[M]. New York: McGraw-Hill, 2009.
[17] PARK C, LEE S H. Validation of multi-temperature nozzle flow code NOZNT: AIAA-1993-2862[R]. Reston: AIAA, 1993.
[18] FRANCESE A. Numerical and experimental study of UHTC materials for atmospheric re-entry[D]. Napoli: University of Napoli, 2007: 94-95.
[19] ANDERSON J D. Hypersonic and high temperature gas dynamics[M]. New York: McGraw-Hill, 2006: 697-699.
[20] GUPTA R N, YOS M, THOMPSON R A. A review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal non-equilibrium calculations to 30000 K: NASA TM-101528[R]. Washington, D.C.: NASA, 1989: 13-14.
[21] 阎超, 禹建军, 李君哲. 热流CFD计算中格式和网格效应若干问题研究[J]. 空气动力学报, 2006, 24(1): 125-130. YAN C, YU J J, LI J Z. Scheme effect and grid dependency in CFD computations of heat transfer[J]. Acta Aerodynamica Sinica, 2006, 24(1): 125-130 (in Chinese).
[22] FERRERO P, D'AMBROSIO D. A numerical method for conjugate heat transfer problems in hypersonic flows: AIAA-2008-4247[R]. Reston: AIAA, 2008.
[23] MURTY M C, MANNA P, CHAKRABORTY D. Conjugate heat transfer analysis in high speed flows[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2013, 227(10): 1672-1681.
[24] ZIMMERMANN J W. Thermophysical properties of ZrB2 and ZrB2-SiC ceramics[J]. Journal of the American Ceramic Society, 2008, 91(5): 1551-2916.

文章导航

/