补气式等离子体射流发生器实验研究
收稿日期: 2015-10-20
修回日期: 2016-01-27
网络出版日期: 2016-02-22
基金资助
航空科学基金(20141368007)
Experimental research on air supplementing type plasma synthetic jet generator
Received date: 2015-10-20
Revised date: 2016-01-27
Online published: 2016-02-22
Supported by
Aeronautical Science Foundation of China (20141368007)
提出一种补气式等离子体射流(ASPSJ)发生器,在常规火花放电式等离子体射流(PSJ)发生器腔体上连接单向阀,改善发生器吸气复原阶段的补气量和射流的连续性,以获得能量更高的合成射流。研究了在不同加载电参数下,不同类型单向阀对发生器最大射流速度的优化作用;通过正交实验法确定了补气式等离子体射流发生器的最佳工作电参数,以获得最高的合成射流速度。文中的等离子体射流发生器配以所选择的补气单向阀,最优加载电压频率为150 Hz,幅值为50 kV,占空比为15%。实验结果表明,补气式等离子体射流发生器将最大射流速度提升20%以上,高射流速度的工作频带由单点扩展到100 Hz,以期在应用于流动控制时获得更好的效果。研究成果为后续的主动流动控制的应用研究提供了指导。
刘汝兵 , 王萌萌 , 郝明 , 林麒 , 王晓光 . 补气式等离子体射流发生器实验研究[J]. 航空学报, 2016 , 37(6) : 1713 -1721 . DOI: 10.7527/S1000-6893.2016.0033
An air supplementing type plasma synthetic jet (ASPSJ) generator has been developed in this paper. A one-way check valve, increasing the air refill supply at the recover stage, is connected to a typical spark discharge plasma synthetic jet (PSJ) generator. The ASPSJ improves jet flow continuity of typical PSJ and can get higher energy synthetic jet. The effect of different valves on the maximum average jet flow speed is researched with different electric parameters. The best electric parameters for the highest synthetic jet flow speed are obtained by orthogonal test. For the test ASPSJ generators, the best loading voltage frequency, amplitude, and duty cycle are 150 Hz, 50 kV and 15%. The results show that ASPSJ strengthens the maximum average jet flow speed by above 20%. The best actuation frequency is increased, and the actuation frequency bandwidth for maximum jet flow speed enlarges from one point to 100 Hz. Better airflow control effect can be expected by ASPSJ in wind tunnel tests. The research results provide guidance for further active flow control application.
[1] GROSSMAN K R, CYBYK B Z, VANWIE D M, et al. SparkJet actuators for flow control:AIAA-2003-0057[R]. Reston:AIAA, 2003.
[2] GROSSMAN K R, CYBYK B Z, RIGLING M C, et al. Characterization of SparkJet actuators for flow control:AIAA-2004-0089[R]. Reston:AIAA, 2004.
[3] CYBYK B Z, SIMON D H, LAND III H B. Experimental characterization of a supersonic flow control actuator:AIAA-2006-0478[R]. Reston:AIAA, 2006.
[4] SARAH J H,BRUCE L H, CYBYK B, et al. Characterization of a high-speed flow control actuator using digital speckle tomography and PIV:AIAA-2008-3759[R]. Reston:AIAA, 2008.
[5] HAACK S J, TAYLOR T M, CYBYK B Z, et al. Experimental estimation of SparkJet efficiency:AIAA-2011-3997[R]. Reston:AIAA, 2011.
[6] POPKI S H, CYBYK B Z, LAND III H B, et al. Recent performance-based advances in SparkJet actuator design for supersonic flow applications:AIAA-2013-0322[R]. Reston:AIAA, 2013.
[7] EMERICK T, ALI M Y, FOSTER C, et al. SparkJet characterizations in quiescent and supersonic flowfields[J]. Experiments in Fluids, 2014, 55(12):1-21.
[8] NARAYANASWAMY V, SHIN J, CLEMENS N T, et al. Investigation of plasma-generated jets for supersonic flow control:AIAA-2008-0285[R]. Reston:AIAA, 2008.
[9] NARAYANASWAMY V, CLEMENS N T, RAJA L L. Investigation of a pulsed-plasma jet for shock/boundary layer control:AIAA-2010-1089[R]. Reston:AIAA, 2010.
[10] GREENE B R, CLEMENS N T, MICKA D. Control of shock boundary layer interaction using pulsed plasma jets:AIAA-2013-0405[R]. Reston:AIAA, 2013.
[11] ANDERSON K, KNIGHT D D. Characterization of single pulse of plasma jet:AIAA-2012-0188[R]. Reston:AIAA, 2012.
[12] GOLBABAEI-ASL M, KNIGHT D, ANDERSON K, et al. SparkJet efficiency:AIAA-2013-0928[R]. Reston:AIAA, 2013.
[13] REEDY T M, KALE N V, CRAIG D J, et al. Experimental characterization of a pulsed plasma jet:AIAA-2012-0904[R]. Reston:AIAA, 2012.
[14] OSTMAN R J, HERGES T G, CRAIG D J, et al. Effect on high-speed boundary-layer characteristics from plasma actuators:AIAA-2013-0527[R]. Reston:AIAA, 2013.
[15] BELINGER A, NAUDE N, CAMBRONNE J P, et al. Plasma synthetic jet actuator:electrical and optical analysis of the discharge[J]. Journal of Physics D:Applied Physics, 2014, 47(34):345202.
[16] SARY G, DUFOUR G, ROGIER F, et al. Modeling and parametric study of a plasma synthetic jet for flow control[J]. AIAA Journal, 2014, 52(8):1591-1603.
[17] CHEDEVERGNE F, LEON O, BODOC V, et al. Experimental and numerical response of a high-Reynolds-number M=0.6 jet to a Plasma Synthetic Jet actuator[J]. International Journal of Heat and Fluid Flow, 2015, 56:1-15.
[18] SHIN J. Characteristics of high speed electro-thermal jet activated by pulsed DC discharge[J]. Chinese Journal of Aeronautics, 2010, 23(5):518-522.
[19] 单勇, 张靖周, 谭晓茗. 火花型合成射流激励器流动特性及其激励参数数值研究[J]. 航空动力学报, 2011, 26(3):551-557. SHAN Y, ZHANG J Z, TAN X M. Numerical study of the flow characteristics and excitation parameters for the SparkJet actuator[J]. Journal of Aerospace Power, 2011, 26(3):551-557(in Chinese).
[20] 朱晨彧. 高性能零质量射流激励器试验研究与参数优选[D]. 南京:南京航空航天大学, 2012:25-45. ZHU C Y. Experimental research and parameters optimization on high-performance zero-mass-jet actuator[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012:25-45(in Chinese).
[21] 刘朋冲, 李军, 贾敏, 等. 等离子体合成射流激励器的流场特性分析[J]. 空军工程大学学报:自然科学版, 2011, 12(6):22-25. LIU P C, LI J, JIA M, et al. Investigation on flow filed of the plasma synthetic jet device[J]. Journal of Air Force Engineering University:Natural Science Edition, 2011, 12(6):22-25(in Chinese).
[22] JIN D, LI Y H, JIA M, et al. Experimental characterization of the plasma synthetic jet actuator[J]. Plasma Science and Technology, 2013, 15(10):1034.
[23] 宗豪华, 吴云, 宋慧敏, 等. 等离子体合成射流的理论模型与重频激励特性[J]. 航空学报, 2015, 36(6):1762-1774. ZONG H H, WU Y, SONG H M, et al. Analytical model and repetitive working characteristic of plasma synthetic jet[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):1762-1774(in Chinese).
[24] WANG L, LUO Z B, XIA Z X, et al. Review of actuators for high speed active flow control[J]. Science China Technological Sciences, 2012, 55(8):2225-2240.
[25] 王林, 罗振兵, 夏智勋, 等. 等离子体合成射流能量效率及工作特性研究[J]. 物理学报, 2013, 62(12):125207. WANG L, LUO Z B, XIA Z X, et al. Energy efficiency and performance characteristics of plasma synthetic jet[J]. Acta Physica Sinica, 2013, 62(12):125207(in Chinese).
[26] WANG L, XIA Z X, LUO Z B, et al. Three-electrode plasma synthetic jet actuator for high-speed flow control[J]. AIAA Journal, 2014, 52(4):879-882.
[27] 罗振兵, 王林, 夏智勋, 等. 等离子体高能合成射流与超声速流相互作用试验研究[C]//中国力学大会2015论文摘要集. 上海:中国力学学会, 上海交通大学, 2015:222. LUO Z B, WANG L, XIA Z X, et al. Experimental research on the interaction between plasma synthetic jet and supersonic flow[C]//Abstract Book of Chinese Congress of Theoretical and Applied Mechanics 2015. Shanghai:The Chinese Society of Theoretical and Applied Mechanics, Shanghai Jiao Tong University, 2015:222(in Chinese).
[28] 林麒, 王萌萌, 郝明, 等. 一种补气式等离子体射流发生器:CN104320900A[P]. 2014-11-13. LIN Q, WANG M M, HAO M, et al. Air supplementing type plasma jet flow generator:CN104320900A[P]. 2014-11-13(in Chinese).
[29] 刘瑞江, 张业旺, 闻崇炜, 等. 正交试验设计和分析方法研究[J]. 实验技术与管理, 2010, 27(9):52-54. LIU R J, ZHANG Y W, WEN C W, et al. Study on the design and analysis of orthogonal experiment[J]. Experimental Technology and Management, 2010, 27(9):52-54(in Chinese).
/
〈 | 〉 |