马赫数可控的方转圆高超声速内收缩进气道试验研究
收稿日期: 2015-10-13
修回日期: 2015-12-28
网络出版日期: 2016-02-22
基金资助
国家自然科学基金(90916029,91116001 )
Experimental investigation on a hypersonic inward turning inlet of rectangular-to-circular shape with controlled Mach number distribution
Received date: 2015-10-13
Revised date: 2015-12-28
Online published: 2016-02-22
Supported by
National Natural Science Foundation of China (90916029, 91116001)
李永洲 , 张堃元 , 孙迪 . 马赫数可控的方转圆高超声速内收缩进气道试验研究[J]. 航空学报, 2016 , 37(10) : 2970 -2979 . DOI: 10.7527/S1000-6893.2016.0035
Based on the axisymmetric basic flowfield with diffusing reflected shock center body and arc tangent Mach number distribution, an inward turning inlet with rectangular-to-circular transition is designed. The experiment on the wind tunnel and numerical simulation are conducted to obtain the operation characteristics of the design point. The experimental results indicate that the pressure distribution of the top wall is characterized by an arc tangent curve. The inlet is of good overall performance, and the vortex region is small. In conclusion, the design method proposed is feasible and efficient. For the design point, the total pressure recovery coefficient is 0.561 and the compression ratio is 26.2 at the exit section. The critical back pressure is about 135 times of the free stream static pressure, and the corresponding total pressure recovery coefficient is 0.210. With 4°attack angle, the compression ratio increases by 49.6% but the total pressure recovery coefficient decreases by 17.5% at the exit section.
[1] HEISER W H, PRATT D T. Hypersonic airbreathing propulsion[M].Reston:AIAA Inc., 1994.
[2] YOU Y C. An overview of the advantages and concerns of hypersonic inward turning inlets:AIAA-2011-2269[R]. Reston:AIAA, 2011.
[3] BILLIG F S, KOTHARI A. Streamline tracing:technique for designing hypersonic vehicles[J]. Journal of Propulsion and Power, 2000, 16(3):465-471.
[4] 李永洲, 张堃元, 朱伟, 等. 双弯曲入射激波的可控中心体内收缩基准流场设计[J]. 航空动力学报, 2015, 30(3):563-570. LI Y Z, ZHANG K Y, ZHU W, et al. Design for inward turning basic flowfield with controlled center body and two incident curved shock waves[J]. Journal of Aerospace Power, 2015, 30(3):563-570(in Chinese).
[5] 张堃元. 基于弯曲激波压缩系统的高超声速进气道反设计研究进展[J], 航空学报, 2015, 36(1):274-288. ZHANG K Y. Research progress on hypersonic inlet reverse design based on curved shock compression system[J]. Acta Aeronautica et Astronamtica Sinica, 2015, 36(1):274-288(in Chinese).
[6] 王骥飞, 蔡晋生, 段焰辉. 高超声速内收缩进气道分步优化设计方法[J]. 航空学报, 2015, 36(12):3759-3773. WANG J F, CAI J S, DUAN Y H. Multistage optimization design method of hypersonic inward turning inlet[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(12):3759-3773(in Chinese).
[7] BULMAN M J, SIEBENHAAR A. The rebirth of round hypersonic propulsion:AIAA-2011-2269[R]. Reston:AIAA, 2006.
[8] BILLIG F S, JACOBSEN L S. Comparison of planar and axisymmetric flow paths for hydrogen fueled space access vehicle:AIAA-2003-4407[R]. Reston:AIAA, 2003.
[9] SMART M K. Design of three-dimensional hypersonic inlets with rectangular-to-elliptical shape transition[J]. AIAA Journal of Power and Propulsion, 1999, 15(3):408-416.
[10] SMART M K. Experimental testing of a hypersonic inlet with rectangular-to-elliptical shape transition:AIAA-1999-0085[R]. Reston:AIAA, 1999.
[11] TAYLOR T, VANWIE D. Performance analysis of hypersonic shape-changing inlets derived from morphing streamline traced flowpaths:AIAA-2008-2635[R]. Reston:AIAA, 2008.
[12] GOLLAN R J, FERLEMANN P G. Investigation of REST-class hypersonic inlet designs:AIAA-2011-2254[R]. Reston:AIAA,2011.
[13] SABEAN J W, LEWIS M J. Computational optimization of a hypersonic rectangular-to-circular inlet[J]. Journal of Propulsion and Power, 2001, 17(3):571-578.
[14] YOU Y C, LIANG D W, GUO R W. High enthalpy wind tunnel tests of three-dimensional section controllable internal waverider hypersonic inlet:AIAA-2009-0031[R]. Reston:AIAA, 2009.
[15] XIAO Y B, YUE L J, CHEN L H, et al. Iso-contraction-ratio methodology for the design of hypersonic inward turning inlets with shape transition:AIAA-2012-5978[R]. Reston:AIAA, 2012.
[16] 南向军, 张堃元, 金志光, 等. 矩形转圆形进气道马赫5正8°攻角启动性能分析[J]. 南京航空航天大学学报, 2012, 44(2):146-151. NAN X J, ZHANG K Y, JIN Z G, et al. Start characteristics of hypersonic inlets with rectangular to circular shape transition at Ma 5 with attack angle 8°[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2012, 44(2):146-151(in Chinese).
[17] MÖLDER S, SZPIRO J. Busemman inlet for hypersonic speeds[J]. Journal of Spacecraft and Rockets, 1966, 3(8):1303-1304.
[18] 贺旭照, 乐嘉陵, 宋文燕, 等. 基于轴对称喷管的三维内收缩进气道的设计与初步评估[J]. 推进技术, 2010, 31(2):147-152. HE X Z, LE J L, SONG W Y, et al. 3D inward turning inlet design basing on axisymmetric nozzle and its preliminary assessment[J]. Journal of Propulsion Technology, 2010, 31(2):147-152(in Chinese).
[19] 李永洲, 张堃元, 罗蕾, 等. 高超声速内收缩进气道轴对称基准流场改进[J]. 航空动力学报, 2013, 28(11):2543-2552. LI Y Z, ZHANG K Y, LUO L, et al. Modified axisymmetric basic flowfield for hypersonic inward turning inlet[J]. Journal of Aerospace Power, 2013, 28(11):2543-2552(in Chinese).
[20] 南向军, 张堃元, 金志光. 采用新型基准流场的高超内收缩进气道试验研究[J]. 航空学报, 2014, 35(1):90-96. NAN X J, ZHANG K Y, JIN Z G. Experimental study of hypersonic inward turning inlets with innovative basic flowfield[J]. Acta Aeronautica et Astronamtica Sinica, 2014, 35(1):90-96(in Chinese).
/
〈 | 〉 |