横向气流中非牛顿液体射流直接数值模拟
收稿日期: 2015-09-15
修回日期: 2015-11-03
网络出版日期: 2016-01-30
基金资助
国家自然科学基金(91441128;51276151)
Direct numerical simulation of a non-Newtonian liquid jet in crossflow
Received date: 2015-09-15
Revised date: 2015-11-03
Online published: 2016-01-30
Supported by
National Natural Science Foundation of China (91441128; 51276151)
采用直接数值模拟研究了动量比为6的非牛顿液体射流在横向气流中的破碎特征,重点分析了表面波发展、弯曲特性和展向扩散等射流结构及其非牛顿特征。在非牛顿液体射流的近喷嘴位置,其表面迹线随时间摆动,并有逆横向气流方向运动的趋势。射流的展向扩散仅在喷入初期较为明显,此后基本维持在接近35°的扩散半角。射流的一次破碎,尤其是液丝与液滴、甚而卫星液滴的生成过程都被精细地捕捉和描述。在近喷嘴的射流柱附近,横向气流流动具有一定的圆柱扰流相似性,在其他区域则表现为极其复杂的紊流特征。射流的非牛顿特性主要体现在黏性系数,不同位置的液体黏性系数相差超过20%。相较牛顿液体射流,剪切稀化的非牛顿射流具有更易破碎的特征。
朱呈祥 , 尤延铖 . 横向气流中非牛顿液体射流直接数值模拟[J]. 航空学报, 2016 , 37(9) : 2659 -2668 . DOI: 10.7527/S1000-6893.2016.0004
A direct numerical simulation study of a non-Newtonian liquid jet in crossflow is carried out with a moderate momentum flux ratio 6. The emphasis of this paper mainly focuses on the flow structure of the jet, including surface behaviors, bending phenomena, spreading features and non-Newtonian characteristics. Deep into the near-field region, it can be observed that the trajectory of the jet oscillates with time and has a tendency to move backward in the reverse direction of the crossflow. The spreading angle increases only at the start of the injection but keeps nearly constant afterwards at 35°. Further insight into the flow physics is obtained by visualizing the primary breakup of the jet, especially the formation of ligaments and droplets, as well as satellite droplets. In the near-field region, the flow feature is similar to that of a circular cylinder, while showing complex turbulent behavior in other regions. The specific non-Newtonian characteristics of the fluid are observed by analyzing the shear thinning viscosity, which varies over 20% spatially inside the liquid. Compared to Newtonian fluids, the current shear thinning non-Newtonian liquid jet shows a stronger breakup feature.
Key words: liquid jet; crossflow; non-Newtonian fluid; breakup; direct numerical simulation
[1] LEE K, AALBURG C, DIEZ F J, et al. Primary breakup of turbulent round liquid jets in uniform crossflows[J]. AIAA Journal, 2007, 45(8): 1907-1916.
[2] SALLAM K A, AALBURG C, FAETH G M. Breakup of round nonturbulent liquid jets in gaseous crossflow[J]. AIAA Journal, 2004, 42(12): 2529-2540.
[3] BIROUK M, NYANTEKYI-KWAKYE B, POPPLE-WELL N. Effect of nozzle geometry on breakup length and trajectory of liquid jet in subsonic crossflow[J]. Atomization and Sprays, 2011, 21(10): 847-865.
[4] WU P, KIRKENDALL K A, FULLER R P. Breakup process of liquid jets in subsonic crossflows[J]. Journal of Propulsion and Power, 1997, 13(1): 64-73.
[5] STENZLER J N, LEE J G, SANTAVICCA D A. Penetration of liquid jets in cross-flow[J]. Atomization and Sprays, 2006, 16(8): 887-906.
[6] GUTMARK E J, IBRAHIM I M, MURUGAPPAN S. Circular and noncircular subsonic jets in cross flow[J]. Physics of Fluids, 2008, 20(7): 075110.
[7] SHAPIRO S R, KING J M, CLOSKEY R T M. Optimization of controlled jets in crossflow[J]. AIAA Journal, 2006, 44(6): 1292-1298.
[8] MEGERIAN S, DAVITIAN J, ALVES L S B. Transverse-jet shear-layer instabilities. Part 1. Experimental studies[J]. Journal of Fluid Mechanics, 2007, 593: 93-129.
[9] COLETTI F, ELKINS C J, EATON J K. An inclined jet in crossflow under the effect of streamwise pressure gradients[J]. Experiments in Fluids, 2013, 54: 1589.
[10] HERRMANN M. Detailed numerical simulations of the primary atomization of a turbulent liquid jet in crossflow[J]. Journal of Engineering for Gas Turbine and Power, 2010, 132(6): 061506.
[11] HERRMANN M. The influence of density ratio on the primary atomization of a turbulent liquid jet in crossflow [J]. Proceedings of Combustion Institute, 2011, 33(2): 2079-2088.
[12] CAVAR D, MEYER K E. LES of turbulent jet in cross flow: Part 2. POD analysis and identification of coherent structures[J]. International Journal of Heat and Fluid Flow, 2012, 36: 35-46.
[13] GALEAZZO F C C, DONNERT G, CARDENAS C, et al. Computational modeling of turbulent mixing in a jet in crossflow[J]. International Journal of Heat and Fluid Flow, 2013, 41: 55-65.
[14] SAU R, MAHESH K. Optimization of pulsed jets in crossflow[J]. Journal of Fluid Mechanics, 2010, 653: 365-390.
[15] PAI M G, DESJARDINS O, PITSCH H. Detailed simulations of primary breakup of turbulent liquid jets in crossflow[R]. Stanford, CA: Center for Turbulence Research, 2008: 451-466.
[16] MULDOON F, ACHARYA S. Direct numerical simulation of pulsed jets in crossflow[J]. Computers & Fluids, 2010, 39(10): 1745-1773.
[17] MARGASON R J. Fifty years of jet in crossflow research: AGARD CP [R]. Paris: AGARD, 1993, 534: 1-41.
[18] AALBURG C, VAN LEER B, FAETH G M, et al. Properties of nonturbulent round liquid jets in uniform gaseous cross flows[J]. Atomization and Sprays, 2005, 15(3): 271-294.
[19] MAHESH K. The interaction of jets with crossflow[J]. Annual Review of Fluid Mechanics, 2013, 45: 379-407.
[20] WONG D C Y, SIMMONS M J H, DECENT S P, et al. Break-up dynamics and drop size distributions created from spiraling liquid jets[J]. International Journal of Multiphase Flow, 2004, 30: 499-520.
[21] CLASEN C, EGGERS J, FONTELOS M A, et al. The beads-on-string structure of viscoelastic threads[J]. Journal of Fluid Mechanics, 2006, 556: 283-308.
[22] YARIN A L. Free liquid jets and films: Hydrodynamics and rheology[M]. New York: Wiley, 1993.
[23] HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39: 201-225.
[24] RIDER W J, KOTHE D B. Reconstructing volume tracking[J]. Journal of Computational Physics, 1998, 141: 112-152.
[25] KORNEV N, HASSEL E. Synthesis of homogeneous anisotropic divergence free turbulent fields with prescribed second-order statistics by vortex dipoles[J]. Physics of Fluids, 2007, 19(6): 068101.
[26] RIDER W J, KOTHE D B. Reconstructing volume tracking[J]. Journal of Computational Physics, 1998, 141: 112-152.
[27] GOMAA H, KUMAR S, HUBER C, et al. Numerical comparison of 3D jet breakup using a compression scheme and an interface reconstruction based VOF-code[C]//24th ILASS-Europe, 2011.
[28] MOTZIGEMBA M, ROTH N, BOTHE D, et al. The effect of non-Newtonian flow behavior on binary droplet collisions: VOF-simulation and experimental analysis[C]//Proceedings of ILASS-Europe, 2002.
[29] FOCKE C, BOTHE D. Computational analysis of binary collisions of shear thinning droplets[J]. Journal of Non-Newtonian Fluid Mechanics, 2011, 166: 799-810.
[30] ZHU C, ERTL M, WEIGAND B. Numerical investigation on the primary breakup of an inelastic non-Newtonian liquid jet with inflow turbulence [J]. Physics of Fluids, 2013, 25(8): 083102.
[31] SCHROEDER J, LEDERER M L, GAUKEL V, et al. Effect of atomizer geometry and rheological properties on effervescent atomization of aqueous polyvinylphrrolidone solution[C]//24th ILASS-Europe, 2011.
[32] YOU Y, LUEDEKE H, HANNEMANN K. On the flow physics of a low momentum flux ratio jet in a supersonic turbulent crossflow[J]. Europhysics Letters, 2012, 97(2): 24001.
[33] BATCHELOR G K. The theory of homogeneous turbulence[M]. Cambridge: Cambridge University Press, 1953.
[34] MUNSON B R, YOUNG D F, OKIISHI T H. Fundamentals of fluid mechanics [M]. New York: John Wiley & Sons, 2006.
/
〈 | 〉 |