材料工程与机械制造

砂布轮柔性抛光力的建模与参数优化

  • 淮文博 ,
  • 唐虹 ,
  • 史耀耀 ,
  • 蔺小军
展开
  • 西北工业大学 现代设计与集成制造技术教育部重点实验室, 西安 710072
淮文博,男,博士研究生。主要研究方向:机械电子、复杂曲面自适应抛光技术。E-mail:qjjxk@sohu.com;唐虹,男,教授,博士生导师。主要研究方向:机电控制与自动化。E-mail:tanghong@nwpu.edu.cn;史耀耀,男,博士,教授,博士生导师。主要研究方向:机电控制自动化、加工表面光整技术。Tel.:029-88492851,E-mail:shiyy@nwpu.edu.cn;蔺小军,男,博士,高级工程师,硕士生导师。主要研究方向:精密几何测量、CAD/CAM。Tel.:029-88460426,E-mail:linxj@nwpu.edu.cn

收稿日期: 2015-12-21

  修回日期: 2016-01-04

  网络出版日期: 2016-01-30

基金资助

国家科技重大专项(2015ZX04001003)

Modelling and parameter optimization of flexible polishing force for abrasive cloth wheel

  • HUAI Wenbo ,
  • TANG Hong ,
  • SHI Yaoyao ,
  • LIN Xiaojun
Expand
  • The Key Laboratory of Contemporary Design and Integrated Manufacturing Technology, Ministry of Education, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2015-12-21

  Revised date: 2016-01-04

  Online published: 2016-01-30

Supported by

National Science and Technology Major Projects (2015ZX04001003)

摘要

砂布轮柔性较大可以实现航空发动机叶片微面切触自适应抛光,提高叶片表面完整性和力学性能。抛光力是影响抛光表面完整性的关键参数,通过单因素试验分析确定了砂布轮抛光力的影响参数及其影响规律,通过正交试验和极差法确定了影响抛光力的主要参数是砂布轮的压缩量和转速;利用二元二次回归正交试验得出了抛光力的预测模型,利用该模型分析了抛光力预测误差变化趋势,明确了不同转速下抛光力主要影响参数的稳定域;整体叶盘的抛光试验表明:通过合理控制抛光力,可以实现表面粗糙度小于0.4 μm的抛光效果,且效率比人工提高20%。

本文引用格式

淮文博 , 唐虹 , 史耀耀 , 蔺小军 . 砂布轮柔性抛光力的建模与参数优化[J]. 航空学报, 2016 , 37(11) : 3535 -3545 . DOI: 10.7527/S1000-6893.2016.0009

Abstract

Abrasive cloth wheel with large flexibility can realize micro-surface contact and adaptive polishing to improve the surface integrity and mechanical properties of the aero-engine blade. Because the polishing force is the key parameter influencing the integrity of polishing surface, influence parameters for polishing force of abrasive cloth wheel are determined and its influence regularities are analyzed by single-factor experiment. The compression size and the rotation speed of abrasive cloth wheel are determined as the main influence parameters for the polishing force by the orthogonal experiment and range analysis. Prediction model of the polishing force is obtained by using binary quadratic regression orthogonal experiment. The variation trend of the polishing force prediction error is analyzed by using the model, and the stability domain of the main influence parameters is determined at different rotation speeds. The results of blisk polishing experiment show that the ideal polishing results of surface roughness less than 0.4 μm and polishing efficiency higher by 20% than manual polishing can be achieved by reasonable control of the polishing force.

参考文献

[1] 段继豪, 史耀耀, 张军锋, 等. 航空发动机叶片柔性抛光技术[J]. 航空学报, 2012, 33(3):573-578. DUAN J H, SHI Y Y, ZHANG J F, et al. Flexible polishing technology for blade of aviation engine[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(3):573-578(in Chinese).
[2] HUANG H, GONG Z M, CHEN X Q, et al. Robotic grinding and polishing for turbine-vane overhaul[J]. Journal of Materials Processing Technology, 2002, 127(2):140-145.
[3] 蔺小军, 杨艳, 吴广, 等. 面向叶片型面的五轴联动柔性数控砂带抛光技术研究[J]. 航空学报, 2015, 36(6):2074-2082. LIN X J, YANG Y, WU G, et al. The research of flexible polishing technology of five-axis NC abrasive belt for blade surface[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):2074-2082(in Chinese).
[4] ZHAO P B, SHI Y Y. Composite adaptive control of belt polishing force for aero-engine blade[J]. Chinese Jounal of Mechanical Engineering, 2013, 26(5):988-996.
[5] HO W H, TSAI J T, LIN B T, et al. Adaptive network based fuzzy inference system for prediction of surface roughness in end milling process using hybrid Taguchigenetic learning algorithm[J]. Expert Systems with Applications, 2009, 36(2):3216-3222.
[6] WANG G L, WANG Y Q, ZHANG L, et al. Development and polishing process of a mobile robot finishing large mold surface[J]. Machining Science and Technology, 2014, 18(4):603-625.
[7] HUNG T C, CHANG S H, LIN C C, et al. Effects of abrasive particle size and tool surface irregularities on wear rates of work and tool in polishing processes[J]. Microelectronic Engineering, 2011, 88(4):2981-2990.
[8] WU X J, KITA Y, IKOKU K. New polishing technology of free form surface by GC[J]. Journal of Materials Processing Technology, 2007, 187(1):81-84.
[9] WANG Y Q, YIN S H, HUANG H, et al. Magnetorheological polishing using a permanent magnetic yoke with straight air gap for ultra-smooth surface planarization[J]. Precision Engneering, 2015, 40(1):309-317.
[10] 韩光超, 赵甲, 甘春明, 等. 磁场辅助软质工具游离磨粒抛光工艺研究[J]. 华中科技大学学报(自然科学版), 2014, 42(5):52-56. HAN G C, ZHAO J, GAN C M, et al. Research on soft tool and free abrasive polishing technology with assistant control of magnetic field[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2014, 42(5):52-56(in Chinese).
[11] LEE E S, LEE S G, CHOI W K, et al. Study on the effect of various machining speeds on the wafer polishing process[J]. Journal of Mechanical Science and Technology, 2013, 27(10):3155-3160.
[12] ZHONG Z W. Recent advances in polishing of advanced materials[J]. Materials and Manufacturing Processes, 2008, 23(5):449-456.
[13] GIVI M, TEHRANI A F, MOHAMMADI A. Polishing of the aluminum sheets with magnetic abrasive finishing method[J]. International Journal of Advanced Manufacturing Technology, 2012, 61(9-12):989-998.
[14] LI M, LYU B H, YUAN J L, et al. Shear-thickening polishing method[J]. International Journal of Machine Tools & Manufacture, 2015, 94(7):88-99.
[15] TAM H Y, LUI O C H, MOK A C K. Robotic polishing of free-form surfaces using scanning paths[J]. Journal of Materials Processing Technology, 1999, 95(1-3):191-200.
[16] MARQUEZ J J, PEREZ J M, RIOS J, et al. Process modelling for robotic polishing[J]. Journal of Materials Processing Technology, 2005, 159(1):69-82.
[17] AHN J H. Intelligently automated polishing for high quality surface formation of sculptured die[J]. Journal of Materials Processing Technology, 2002, 130-131(1):339-344.
[18] CHAVES-JACOB J, LINARES J M, SPRAUEL J M. Control of the contact force in a pre-polishing operation of free-form surfaces realised with a 5-axis CNC machine[J]. CIRP Annals-Manufacturing Technology, 2015, 64(1):309-312.
[19] PAN R, WANG Z Z, WANG C J, et al. Research on control optimization for bonnet polishing system[J]. International Journal of Precision Engineering and Manufacturing, 2014, 15(3):483-488.
[20] ZENG S Y, BLUNT L. Experimental investigation and analytical modelling of the effects of process parameters on material removal rate for bonnet polishing of cobalt chrome alloy[J]. Precision Engineering, 2014, 38(2):348-355.
[21] 黄云, 张磊, 黄智, 等. Zr-4合金管砂带随形磨削实验分析[J]. 重庆大学学报, 2012, 35(10):30-37. HUANG Y, ZHANG L, HUANG Z, et al. Experimental analysis of the abrasive belt follow-up grinding of Zirconium-4 alloys tubes and pipes[J]. Journal of Chongqing University, 2012, 35(10):30-37(in Chinese).
[22] 路勇, 黄云. 砂带磨削磨损性能试验研究[J]. 机械科学与技术, 2014, 33(12):1865-1868. LU Y, HUANG Y. Experimental investigation in the grinding and wear performance of abrasive belt grinding[J]. Mechanical Science and Technology for Aerospace, 2014, 33(12):1865-1868(in Chinese).
[23] 霍文国, 徐九华, 傅玉灿. 近α钛合金砂带磨削的磨粒磨损研究[J]. 山东大学学报(工学版), 2010, 40(1):53-58. HUO W G, XU J H, FU Y C. Study of abrasive wear in belt grinding of a close alpha titanium alloy[J]. Journal of Shandong University(Engineering Science), 2010, 40(1):53-58(in Chinese).
[24] 霍文国, 徐九华, 傅玉灿, 等. 超硬磨料砂轮干式磨削Ti6Al4V合金的表面完整性研究[J]. 山东大学学报(工学版), 2012, 42(3):100-104. HUO W G, XU J H, FU Y C, et al. Investigation of surface integrity on dry grinding Ti6Al4V alloy with super-abrasive wheels[J]. Journal of Shandong University (Engineering Science), 2012, 42(3):100-104(in Chinese).
[25] 李勋, 刘佳, 陈志同, 等. 高温不锈钢的磨削温度测量与烧伤现象分析[J]. 北京航空航天大学学报, 2010, 36(7):830-835. LI X, LIU J, CHEN Z T, et al. Temperature measurement and surface burn out in grinding 1Cr11Ni2W2MoV high-temperature stainless steel[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(7):830-835(in Chinese).
[26] 刘佳, 陈五一. 杯形瓷CBN砂轮修整工艺及参数优化[J]. 北京航空航天大学学报, 2012, 38(3):374-379. LIU J, CHEN W Y. Dressing process and parametric optimization of cup-shaped vitrified CBN wheels[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(3):374-379(in Chinese).
[27] 黄新春, 张定华, 姚倡锋, 等. 镍基高温合金GH4169磨削参数对表面完整性影响[J]. 航空动力学报, 2013, 28(3):621-628. HUANG X C, ZHANG D H, YAO C F, et al. Effects of grinding parameters on surface integrity of GH4169 nickel-based superalloy[J]. Journal of Aerospace Power, 2013, 28(3):621-628(in Chinese).
[28] 黄新春, 张定华, 杨振朝, 等. GH4169磨削表面粗糙度影响参数的敏感性研究[J]. 航空制造技术, 2012(8):83-91. HUANG X C, ZHANG D H, YANG Z C, et al. Study of sensitivity of parameter affecting surface roughness in grinding superalloy GH4169[J]. Aeronautical Manufacturing Technology, 2012(8):83-91(in Chinese).
[29] 计时鸣, 金明生, 张宪, 等. 应用于模具自由曲面的新型气囊抛光技术[J]. 机械工程学报, 2007, 43(8):2-6. JI S M, JIN M S, ZHANG X, et al. Novel gasbag polishing technique for free form mold[J]. Chinese Journal of Mechanical Engineering, 2007, 43(8):2-6(in Chinese).
[30] 张利. 模具曲面气囊进动抛光技术及实现研究[D]. 杭州:浙江工业大学, 2012:3-6. ZHANG L. Gasbag precession polishing technique and its realization on curved surface mould[D]. Hangzhou:Zhejiang University of Technology, 2012:3-6(in Chinese).
[31] 陈伟强. 连续进动气囊抛光技术研究[D]. 杭州:浙江工业大学, 2012:2-10. CHEN W Q. Research on gasbag polishing with continuous precession process[D]. Hangzhou:Zhejiang University of Technology, 2012:2-10(in Chinese).
[32] 郭龙文, 杨能阁, 陈燕. 磁力研磨工艺对整体叶盘表面完整性的影响[J]. 中国表面工程, 2013, 26(3):10-14. GUO L W, YANG N G, CHEN Y. Influence of magnetic abrasive finishing technology on surface integrity of vane-integrated disk[J]. China Surface Engineering, 2013, 26(3):10-14(in Chinese).
[33] 孙兴伟, 赵正庆, 王可, 等. 螺旋曲面成型抛光用千叶轮的廓型设计及修整方法[J]. 沈阳工业大学学报, 2014, 36(2):176-181. SUN X W, ZHAO Z Q, WANG K, et al. Profile designing and finishing method for flap wheel applied in shaping and polishing of spiral curved surface[J]. Journal of Shenyang University of Technology, 2014, 36(2):176-181(in Chinese).
[34] 赵正庆. 光滑螺旋曲面成型抛光技术研究[D]. 沈阳:沈阳工业大学, 2013:3-11. ZHAO Z Q. Study of forming polishing technology based on smooth spiral curved surface[D]. Shenyang:Shenyang University of Technology, 2013:3-11(in Chinese).
[35] BRINKSMEIER E, RIEMER O, GESSENHARTER A. Finishing of structured surfaces by abrasive polishing[J]. Precision Engineering, 2006, 30(3):325-336.
[36] SUN Y Q, GIBLIN D J, KAZEROUNIAN K. Accurate robotic belt grinding of workpieces with complex geometries using relative calibration techniques[J]. Robotics and Computer-Integrated Manufacturing, 2009, 25(1):204-210.
[37] 李小彪, 史耀耀, 赵鹏兵, 等. 航空发动机叶片砂带抛光力控制技术[J]. 计算机集成制造系统, 2012, 18(6):1209-1214. LI X B, SHI Y Y, ZHAO P B, et al. Polishing force control technology of aero-engine blade in belt polishing[J]. Computer Integrated Manufacturing Systems, 2012, 18(6):1209-1214(in Chinese).
[38] SHI Y J, ZHENG D, H U L, et al. NC polishing of aspheric surfaces under control of constant pressure using a magnetorheological torque servo[J]. International Journal of Advanced Manufacturing Technology, 2012, 58(9-12):1061-1073.
[39] TAM H, CHENG H. An investigation of the effects of the tool path on the removal of material in polishing[J]. Journal of Materials Processing Technology, 2010, 210(5):807-818.
[40] RECH J, KERMOUCHE G, CLAUDIN C, et al. Modelling of the residual stresses induced by belt finishing on a AISI52100 hardened steel[J]. International Journal of Material Forming, 2008, 1(1):567-570.
[41] 李云雁, 胡传荣.试验设计与数据处理[M]. 第2版. 北京:化学工业出版社, 2008:128-132, 182-190. LI Y Y, HU C R. Experiment design and data processing[M]. 2nd ed. Beijing:Chemical Industry Press, 2008:128-132, 182-190(in Chinese).

文章导航

/