流体力学与飞行力学

低雷诺数分布式螺旋桨滑流气动影响

  • 王科雷 ,
  • 祝小平 ,
  • 周洲 ,
  • 王红波
展开
  • 1. 西北工业大学 航空学院, 西安 710072;
    2. 西北工业大学 无人机特种技术重点实验室, 西安 710065
王科雷 男, 博士研究生。主要研究方向:飞行器总体设计、气动布局设计。 Tel.: 029-88453368 E-mail: ak203201@163.com

收稿日期: 2015-09-29

  修回日期: 2015-11-20

  网络出版日期: 2016-01-28

基金资助

陕西省科技统筹创新工程计划(S2015TQGY0061)

Distributed electric propulsion slipstream aerodynamic effects at low Reynolds number

  • WANG Kelei ,
  • ZHU Xiaoping ,
  • ZHOU Zhou ,
  • WANG Hongbo
Expand
  • 1. College of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Science and Technology on UAV Laboratory, Northwestern Polytechnical University, Xi'an 710065, China

Received date: 2015-09-29

  Revised date: 2015-11-20

  Online published: 2016-01-28

Supported by

Science and Technology Innovation Project of Shaanxi Province (S2015TQGY0061)

摘要

以高空长航时(HALE)太阳能无人机(UAVs)研究为背景,采用基于混合网格技术及k-kL-ω转捩模型求解雷诺平均Navier-Stokes(RANS)方程的多重参考系(MRF)方法,对3种螺旋桨-机翼构型的低雷诺数气动特性进行了高精度准定常数值模拟,在等拉力前提条件下,通过对比机翼气动力系数及表面流场结构特征分析了分布式螺旋桨(DEP)滑流对FX63-137机翼的气动影响。研究表明:螺旋桨滑流影响使得桨后总压及流速显著增大,这是机翼升力增大的主要原因,但同时机翼阻力特性急剧恶化,升阻比反而降低;螺旋桨滑流向机翼边界层内注入丰富湍动能从而抑制流动分离,扩大机翼表面湍流范围及附着流动区域;分布式螺旋桨滑流与低雷诺数机翼表面复杂流动相互作用显著,主要表现为滑流区域边界展向涡结构的产生。

本文引用格式

王科雷 , 祝小平 , 周洲 , 王红波 . 低雷诺数分布式螺旋桨滑流气动影响[J]. 航空学报, 2016 , 37(9) : 2669 -2678 . DOI: 10.7527/S1000-6893.2016.0032

Abstract

Based on the research of the high altitude long endurance (HALE) solar-powered unmanned aerial vehicles (UAVs), the low Reynolds aerodynamic properties of three different propeller-wing configurations are numerically simulated by quasi-steadily solving the Reynolds averaged Navier-Stokes (RANS) equations of multiple reference frames (MRF) based on the hybrid grid technology and k-kL-ω transition model. Under the request of equal thrust, the distributed electric propulsion (DEP) slipstream effects on the FX 63-137 wing are analyzed by the comparison of the aerodynamic forces and flow characteristics between different configurations. It shows that the application of DEP is supposed to improve the lift property but to worsen the drag property heavily, which is mainly due to the increase of the flow speed and total pressure; the propeller slipstream helps expand the area of turbulent adherent flow by bringing turbulent energy into the boundary layer to sustain strong adverse pressure gradient; the appearance of vortex structures at the boundaries of slipstream regions indicates that multiple propellers' slipstream regions strongly interact with the flow field on the wing at low Reynolds numbers.

参考文献

[1] BOUCHER R J. Sunrise, the world's first solar-powered airplane[J]. Journal of Aircraft, 1985, 22(10): 840-846.
[2] BOUCHER R J. Histroy of solar flight: AIAA-1984-1429[R]. Reston: AIAA, 1984.
[3] MEHDI H. Conceptual design method for solar powered aircrafts: AIAA-2011-165[R]. Reston: AIAA, 2011.
[4] HORTON H P. Laminar separation bubbles in two- and three-dimensional incompressible flow[D]. London: University of London, 1968.
[5] JAN W, ULRICH S, ROLF R. Validation of the RANS-simulation of laminar separation bubbles on airfoils[J]. Aerospace Science and Technology, 2006, 10(6): 484-494.
[6] 王科雷, 周洲, 甘文彪, 等. 太阳能无人机低雷诺数翼型气动特性研究[J]. 西北工业大学学报, 2014, 32(2) : 163-168. WANG K L, ZHOU Z, GAN W B, et al. Studying aerodynamic performance of the low-Reynolds-number airfoil of solar energy UAV[J]. Journal of Northwestern Polytechnical University, 2014, 32(2) : 163-168 (in Chinese).
[7] NOLL T E, ISHMAEL S D, HENWOOD B, et al. Investigation of the Helios prototype aircraft mishap[R]. Washington, D. C.: NASA, 2004.
[8] STOLL A M, BEVIRT J, MOORE M D, et al. Drag reduction through distributed electric propulsion: AIAA-2014-2851[R]. Reston: AIAA, 2014.
[9] BORER N K, MOORE M D, TURNBULL A. Tradespace exploration of distributed propulsors for advanced on- demand mobility concepts: AIAA-2014-2850[R]. Reston: AIAA, 2014.
[10] PATTERSON M D, DASKILEWICZ M J, GERMAN B J. Conceptual design of electric aircraft with distributed propellers: multidisciplinary analysis needs and aerodynamic modeling development: AIAA-2014-0534[R]. Reston: AIAA, 2014.
[11] PATTERSON M D, GERMAN B J. Simplified aerodynamics models to predict the effects of upstream propellers on wing lift: AIAA-2015-1673[R]. Reston: AIAA, 2015.
[12] CATALANO F M. On the effects of an installed propeller slipstream on wing aerodynamic characteristics[J]. Acta Polytechnica, 2004, 44(3): 8-14.
[13] FUMIYASU M, HIROKI N. Propeller slipstream interference with wing aerodynamic characteristics of Mars airplane at low Reynolds number: AIAA-2014-0744[R]. Reston: AIAA, 2014.
[14] EHAB A E, COLIN P B. Experimental investigation of the effect of propeller slipstream on boundary layer behavior at low Reynolds number: AIAA-2000-4123[R]. Reston: AIAA, 2000: 267-276.
[15] QIN E, YANG G W, LI F W. Numerical analysis of the interference effect of propeller slipstream on aircraft flowfield[J]. Journal of Aircraft, 1998, 35(1): 84-90.
[16] 夏贞锋, 杨永. 螺旋桨滑流与机翼气动干扰的非定常数值模拟[J]. 航空学报, 2011, 32(7): 1195-1201. XIA Z F, YANG Y. Unsteady numerical simulation of interaction effects of propeller and wing[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(7): 1195-1201(in Chinese).
[17] PATTERSON M D, GERMAN B J. Wing aerodynamic analysis incorporating one-way interaction with distributed propellers: AIAA-2014-2852[R]. Reston: AIAA, 2014.
[18] NICHOLAS K B, MARK D M. Integrated propeller-wing design exploration for distributed propulsion concepts: AIAA-2015-1672[R]. Reston: AIAA, 2015.
[19] 程晓亮, 李杰. 螺旋桨滑流对机翼气动特性影响的方法研究[J]. 科学技术与工程, 2011, 11(14): 3229-3235. CHENG X L, LI J. Unsteady computational method for propeller/wing interaction[J]. Science Technology and Engineering, 2011, 11(14): 3229-3235(in Chinese).
[20] WALTERS D K, COKLJAT D. A three-equation eddy-viscosity model for Reynolds-averaged Navier-Stokes simulations of transitional flows[J]. Journal of Fluids Engineering, 2008, 130(1): 1-14.
[21] 徐家宽, 白俊强, 黄江涛, 等. 考虑螺旋桨滑流影响的机翼气动优化设计[J]. 航空学报, 2014, 35(11): 2910-2920. XU J K, BAI J Q, HUANG J T, et al. Aerodynamic optimization design of wing under the interaction of propeller slipstream[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11): 2910-2920(in Chinese).
[22] 陈广强, 白鹏, 詹慧玲, 等. 高空长航时无人机螺旋桨滑流效应影响研究[J]. 飞机设计, 2014, 34(4): 1-9. CHEN G Q, BAI P, ZHAN H L, et al. Numerical simulation study on propeller slipstream effect on high altitude long endurance unmanned air vehicle (HALE UAV)[J]. Aircraft Design, 2014, 34(4): 1-9(in Chinese).
[23] BRADSHAW P. Turbulence: the chief outstanding difficulty of our subject[J]. Experiments in Fluids, 1994, 16(3): 203-216.
[24] WALTERS D K, LEYLEK J H, WALTERS D K, et al. Impact of film-cooling jets on turbine aerodynamic losses[J]. Journal of Turbomachinery, 1999, 122(3): 537-545.
[25] VOLINO R J. A new model for free-stream turbulence effects on boundary layers[J]. Journal of Turbomachinery, 1997, 120(3): 613-620.
[26] GREGORY A W, BRYAN D M, BENJAMIN A B, et al. Summary of low-speed airfoil data-Vol.5[M]. Illonois: University of Illinois at Urbana-Champaign, 2012.
[27] WEIJIA F, JIE L, HAOJIE W. Numerical simulation of propeller slipstream effect on a propeller-driven unmanned aerial vehicle[J]. Procedia Engineering, 2012, 31(4): 150-155.
[28] CATALANO P, AMATO M. An evaluation of RANS turbulence modeling for aerodynamic applications[J]. Aerospace Science and Technology, 2003, 7(7): 493-509.

文章导航

/