流体力学与飞行力学

轴流压气机机匣变形对多排转子流场特性的影响

  • 陈颖秀 ,
  • 侯安平 ,
  • 张明明 ,
  • 张思牧
展开
  • 1. 北京航空航天大学 能源与动力工程学院, 北京 100083;
    2. 北京工业大学 北京科学与工程计算研究院, 北京 100124
陈颖秀,男,博士研究生。主要研究方向:压气机非均匀流动特性,叶轮机械气动弹性稳定性。Tel.:010-82313700,E-mail:cyxiu1991@163.com;侯安平,男,博士,副教授。主要研究方向:叶轮机械气动弹性,压气机气动设计,气浮高速电机。Tel.:010-82316624,E-mail:houap@buaa.edu.cn;张明明,男,博士,讲师。主要研究方向:叶轮机械气动弹性,压气机气动稳定性。Tel.:010-82313700,E-mail:mmzhang@bjut.edu.cn

收稿日期: 2015-11-11

  修回日期: 2016-01-06

  网络出版日期: 2016-01-18

基金资助

国家自然科学基金(51306003)

Effects of casing deformation on blade rows flow field characteristics in an axial-flow compressor

  • CHEN Yingxiu ,
  • HOU Anping ,
  • ZHANG Mingming ,
  • ZHANG Simu
Expand
  • 1. School of Energy and Power Engineering, Beihang University, Beijing 100083, China;
    2. Beijing Center for Scientific and Engineering Computing, Beijing University of Technology, Beijing 100124, China

Received date: 2015-11-11

  Revised date: 2016-01-06

  Online published: 2016-01-18

Supported by

National Natural Science Foundation of China

摘要

在实际轴流压气机加工、装配、使用过程中,机匣的圆度控制、叶片的高度控制、转子和机匣之间的同轴度控制等都普遍存在误差,意味着叶尖间隙的不均匀性必然地存在于每台压气机中。随着对轴流压气机流动研究的不断深入,叶尖周向非均匀间隙成为了需要考虑的问题。针对由机匣变形造成的非均匀叶尖间隙,研究了其对多排转子流场特性的影响。首先介绍了表征机匣变形程度的新参数,进而引进了非轴对称压气机模型的建模方法。针对3种不同的间隙周向布局,采用定常和非定常方法进行了数值模拟,对比了均匀与非均匀间隙下多排转子的气动性能,分析了机匣变形对气动损失分布和传播的影响,并研究了非均匀间隙下非定常压力和气动力的脉动特征。结果表明:非均匀间隙会降低转子性能,转子叶排叶尖区域的流场在非均匀间隙下呈现明显的周向非对称性,在上游叶排“尾迹”的干扰下,后排转子叶尖流场的周向非对称性要大于前排转子。非均匀间隙布局与各叶片气动力分布呈现明显的对应关系,小间隙区域叶片的气动力高,大间隙区域叶片气动力相对较低,从而增加了非均匀间隙下转子叶片的气动力幅值。

本文引用格式

陈颖秀 , 侯安平 , 张明明 , 张思牧 . 轴流压气机机匣变形对多排转子流场特性的影响[J]. 航空学报, 2016 , 37(11) : 3284 -3295 . DOI: 10.7527/S1000-6893.2016.0010

Abstract

In the actual machining, installation and using process, the problems of casing deformation, rotor eccentricity and nonuniform rotor blade heights exist to some extent in all axial-flow compressors, resulting in circumferential nonuniform tip clearance. With the deepening of the research on axial-flow compressor flow, the nonuniform clearance becomes the problem should be considered. The focus of this investigation is on the nonuniform clearance caused by casing deformation and its effect on the flow field characteristics of the rotor rows. The new parameter representing the nonuniformity of tip clearance is recommended, and the modeling approach for the nonaxisymmetry compressor is introduced. Three numerical models with different tip clearance nonuniformities are investigated by both steady and unsteady calculations. The effects of nonuniform clearance on aerodynamic performance and flow loss distribution are analyzed. The unsteady pressure fluctuation and aerodynamic force are also discussed. The results indicate that the nonuniform clearance can contribute to performance degradation and the circumferential asymmetrical flow field in blade tip regions. Due to the "wake" of the upstream blade row, flow field asymmetry of the back rotor row is more obvious than that of the front rotor row. There is direct correspondence between the nonuniform clearance layout and the aerodynamic force distribution in the circumferential direction. The blade aerodynamic force is higher at small tip clearance regions and lower at large tip clearance regions, increasing the amplitude of the aerodynamic force in casing deformation.

参考文献

[1] SMITH L H. The effect of tip clearance on the peak pressure rise of axial-flow fans and compressors[Z]. ASME Symposium on Stall, 1958:149-152.
[2] BAGHDADI S. Modeling tip clearance effects in multistage axial compressors[J]. Journal of Turbomachinery, 1996, 118(4):697-705.
[3] SMITH L H. Casing boundary layers in multistage axial flow compressors[J]. Flow Research on Blading, 1970, 106(1):635-647.
[4] CHRISTOPHER H, RICHARD W, GARY P. Effect of tip clearance on fan noise and aerodynamic performance:AIAA-2005-2875[R]. Reston:AIAA, 2005.
[5] GRAF M B, WONG T S, GREITZER E M, et al. Effects of nonaxisymmetric tip clearance on axial compressor performance and stability[J]. Journal of Turbomachinery, 1998, 120(4):648-661.
[6] THOMAS H J. Unstable natural vibration of turbine rotors induced by the clearance flow in glands and blading[J]. Bulletin de L'A.I.M., 1958,71(11/12):1039-1063.
[7] ALFORD J. Protecting turbomachinery from self-excited rotor whirl[J]. Journal of Engineering for Power, 1965, (87):333-343.
[8] SONG S J, MARTINE-SANCHEZ M. Rotordynamic forces due to turbine tip leakage:part 1-Blade scale effects[J]. Journal of Turbomachinery, 1997, 119(4):695-703.
[9] SONG S J, MARTINE-SANCHEZ M. Rotordynamic forces due to turbine tip leakage:part 2-Radius scale effects and experimental verification[J]. Journal of Turbomachinery,1997, 119(4):704-713.
[10] SONG S J. Inviscid rotor dynamic damping forces due to nonaxisymmetric tip clearance in turbines[J]. AIAA Journal, 1998, 36(12):2163-2169.
[11] EHRICH F. Rotor whirl forces induced by the tip clearance effect in axial flow compressors[J]. ASME Journal of Vibration and Acoustics, 1993, 115(4):509-515.
[12] STORACE A, EHRICH F, SONG S J, et al. Unsteady flow and whirl-inducing forces in axial-flow compressors:part I-Experiment[J]. Journal of Turbomachinery, 2001, 123(3):433-445.
[13] 梁武昌, 楚武利, 朱俊强, 等. 非轴对称尖部间隙对轴流压气机性能影响的实验研究[J]. 航空动力学报, 2004, 19(2):233-236. LIANG W C, CHU W L, ZHU J Q, et al. Effect of asymmetric tip clearance on axial flow compressor performance[J]. Journal of Aerospace Power, 2004, 19(2):233-236(in Chinese).
[14] CHEN Y X, HOU A P, ZHANG M M, et al. Effects of nonuniform tip clearance on fan performance and flow field:ASME-GT2015-42133[R]. New York:ASME, 2015.
[15] RABE D. Influence of inlet distortion on transonic compressor blade loading:AIAA-1995-2461[R]. Reston:AIAA, 1995.
[16] DONG X, SUN D, LI F, et al. Effects of rotating inlet distortion on compressor stability with SPS casing treatment[J]. Journal of Fluids Engineering, 2015, 112(29):59-60.
[17] DANIELE C L, TEREN F. Prediction of compressor stall for distorted and undistorted inlet flow[J]. Journal of Aircraft, 1975, 12(10):841-846.
[18] SPAKOVSZKY Z S, WEIGL H J, PADUANO J D, et al. Rotating stall control in a high-speed stage with inlet distortion:part II-Circumferential distortion[J]. Journal of Turbomachinery, 1999, 121(3):517-524.
[19] ANSYS. Computational fluid dynamics soft ware package user guide[CP/DK]. Canonsburg, PA:ANSYS, Inc., 2014.
[20] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605.
[21] MONTOMOLI F, NAYLOR E, HODSON H P, et al. Unsteady effects in axial compressors:A multistage simulation[J]. Journal of Propulsion & Power, 2013, 29(5):1001-1008.

文章导航

/