流动控制

基于合成射流的二维后台阶分离流主动控制

  • 李斌斌 ,
  • 姚勇 ,
  • 顾蕴松 ,
  • 程克明
展开
  • 1. 西南科技大学 土木工程与建筑学院, 绵阳 621010;
    2. 南京航空航天大学 航空宇航学院, 南京 210016
顾蕴松 男,教授。主要研究方向:实验空气动力学,流体流动测试与流动控制。Tel:025-84896361 E-mail:yunsongggu@nuaa.edu.cn

收稿日期: 2015-11-02

  修回日期: 2016-01-08

  网络出版日期: 2016-01-13

基金资助

空气动力学国家重点实验室基金(JBKY14010201)

Active control of 2D backward facing step separated flow based on synthetic jet

  • LI Binbin ,
  • YAO Yong ,
  • GU Yunsong ,
  • CHENG Keming
Expand
  • 1. School of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang 621010, China;
    2. College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2015-11-02

  Revised date: 2016-01-08

  Online published: 2016-01-13

Supported by

State Key Laboratory Foundation of Aerodynamics (JBKY14010201)

摘要

作为一种新的流动控制激励器,合成射流技术在流动分离控制、降低压力脉动和抑制噪声等方面具有广阔的应用前景。实验利用合成射流主动控制技术对二维后台阶湍流分离再附流动控制进行了研究,应用表面测压、粒子图像测速(PIV)和热线等多种实验测试技术对后台阶表面压力分布、流场结构以及剪切层特性进行了测试。结果表明,在台阶前缘施加合成射流可有效减小回流区范围和降低再附长度,当合成射流的动量系数为0.301×10-3时,可使再附点长度减小25%。合成射流控制使得沿台阶下游的湍动能和雷诺应力增强,提高了台阶下游流场的混合效率。热线动态结果表明频率是后台阶分离流动控制的关键参数,当频率为260 Hz、激励频率与剪切层涡脱落频率之比为1.32、激励频率等同于旋涡脱落频率时,合成射流控制效果最好,仅需消耗较小的能量即可实现流动控制的目的。

本文引用格式

李斌斌 , 姚勇 , 顾蕴松 , 程克明 . 基于合成射流的二维后台阶分离流主动控制[J]. 航空学报, 2016 , 37(6) : 1753 -1762 . DOI: 10.7527/S1000-6893.2016.0014

Abstract

As a new type of flow control actuator, synthetic jet has a potentially broad application in the fields of flow separation control, pressure pulsation reduction and noise suppression. Experimental investigation on 2D backward facing step turbulent separated and reattachment flow control with synthetic jet arrays is conducted, in which the surface pressure distribution of backward facing step, the field structure and the prominent features of shear layer are tested with many experimental devices such as pressure transducers, particle image velocimetry (PIV) and hot wire anemometer. The results show that the perturbation of synthetic jet which is formed at the upper edge of the step can effectively reduce the recirculation zone and reattachment length; when the synthetic jet momentum coefficient is 0.301×10-3, the non-dimensional length of reattachment decreases by 25% at most. Synthetic jet control increases the turbulent kinetic energy and Reynolds stress along the downstream steps and enhances the mixing efficiency of the flow field along the downstream steps. The hot wire test results show that frequency is the key parameter of backward facing step flow separation control; when the disturbance frequency is 260 Hz, the ratio of disturbance frequency to shear layer vortex shedding frequency is 1.32 and the forcing frequency is equivalent to the vortex shedding frequency, the effect of synthetic jet control is the best and the flow control can be achieved only with low consumption of energy.

参考文献

[1] EATON J K, JOHNSTOR J P. A review of research on subsonic turbulent flow reattachment[J]. AIAA Journal, 1981, 19(9):1093-1099.
[2] FREDERODE W R, KRADSHAW J T. Control of coherent structure of in reattaching laminar and turbulent shear layer[J]. AIAA Journal, 1986, 24(12):1956-1963.
[3] ARMALY B F, DURST F, PEREIRA J C F, et al. Expreimental and theoretical investigation of backward facing step flow[J]. Journal of Fluid Mechanics, 1983, 127(1):473-496.
[4] 兰世隆, 王晋军. 后向台阶层流边界层特性研究[J]. 北京航空航天大学学报, 1996, 22(5):581-584. LAN S L, WANG J J. The characteristics of separated shear layer a backward facing step lamnar flow[J]. Journal of Beijing University of Aeronautics and Astronautics, 1996, 22(5):581-584(in Chinese).
[5] URUBA V, JONAS P, MAZUR O. Control of a channel flow behind a backward facing step by suction/blowing[J]. International Journal of Heat and Fluid Flow, 2007, 28(4):665-672.
[6] CHEN Y T, NIE J H, ARMALY B F, et al. Turbulent separated convection flow adjacent to backward facing step effects of step height[J]. International Journal of Heat and Mass Transfer, 2006, 49(9):3670-3680.
[7] KRAL L D. Active flow control technology:ASME No. FEDSM 2001-18196[R]. New York:ASME, 2001.
[8] PARK H, JEON W P, CHOI H, et al. Mixing enhancement behind a backward facing step using tabs[J]. Physics of Fluids, 2007, 19(10):103-105.
[9] SANO M, FUKAZAWA K, SAKURABA K. Control of turbulent channel flow over a backward facing step by suction or injection[J]. Heat Transfer-Asian Research, 2004, 33(8):490-504.
[10] 陈国定, 明晓. 后台阶流动控制[C]//第十四届研究生学术会议论文集. 南京:南京航空航天大学, 2012. CHEN G D, MING X. Research on the backward facing step flow control[C]//The 14th Graduate Academic Conference Proceedings. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012(in Chinese).
[11] CHUN K B, SUNG H J. Control of turbulent separated flow over a backward facing step by local forcing[J]. Experiments in Fluids, 1996, 21(6):417-426.
[12] DEJOAN A, LESCHZINER M A. Large eddy simulation of periodically perturbed separated flow over a backward facing step[J]. International Journal of Heat and Fluid Flow, 2004, 25(4):581-592.
[13] SMITH B L, GLEZER A. The formation and evolution of synthetic jets[J]. Physics of Fluids, 1998, 10(9):2281-2297.
[14] CHEN F, BEELER Y, BRYANT R. Development of synthetic jet actuators for active flow control at NASA Langley:AIAA-2000-2405[R]. Reston:AIAA, 2000.
[15] 肖中云, 顾蕴松, 江雄. 一种基于引射效应的流体推力矢量新技术[J]. 航空学报, 2012, 33(11):1967-1974. XIAO Z Y, GU Y S, JIANG X. A new fluidic thrust vectoring technique based on ejecting mixing effects[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11):1967-1974(in Chinese).
[16] 李斌斌, 姜裕标, 顾蕴松, 等. 合成射流大攻角非对称涡控制的试验研究[J]. 航空学报, 2015, 36(3):764-771. LI B B, JIANG Y B, GU Y S, et al. Experimental study of asymmetric vortex control at high angle of attack with synthetic jet[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3):764-771(in Chinese).
[17] CIURYLA M, LIU Y, FARNSWORTH J, et al. Flow control and flight control on a Cessna 182 model[J]. Journal of Aircraft, 2007, 44(2):642-653.
[18] DANDOIS J, GARNIER E. Numerical simulation of active separation control by a synthetic jet[J]. Journal of Fluid Mechanics, 2007, 574(5):25-58.
[19] 陈占军, 王晋军. 合成射流改善S形进气道流场特性的研究[J]. 中国科学:技术科学, 2012, 55(9):2578-2584. CHEN Z J, WANG J J. Numerical investigation on sythetic jet flow control inside an S inlet duct[J]. Science China Technological Sciences, 2012, 55(9):2578-2584(in Chinese).
[20] YOU D, MOIN P. Active control of flow separation over an airfoil using synthetic jets[J]. Journal of Fluids and Structures, 2008, 24(8):1349-1357.
[21] 王林, 罗振兵, 夏智勋, 等. 合成双射流控制翼型分离流动的数值研究[J]. 空气动力学学报, 2012, 30(3):353-357. WANG L, LUO Z B, XIA Z X, et al. Numerical simulation of separated flow control on an airfoil using dual sythetic jets[J]. Acta Aerodynamica Sinica, 2012, 30(3):353-357(in Chinese).
[22] 韩忠华, 乔志德, 宋文萍. 零质量射流推迟翼型失速的数值模拟[J]. 航空学报, 2007, 28(5):1040-1046. HAN Z H, QIAO Z D, SONG W P. Numerical simulation of active flow control to airfoil stall using local sythetic jet[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(5):1040-1046(in Chinese).
[23] KIM S H, KIM C. Separation control on NACA23012 using synthetic jet[J]. Aerospace Science and Technoogy, 2009, 13(4):172-182.
[24] DONOVAN F, LINDA D K, CARY W. Active flow control applied to an airfoil:AIAA-1998-0210[R]. Reston:AIAA, 1998.
[25] BRADSHAW P, WONG F Y F. The reattachment and relaxation of turbulent shear layer[J]. Journal of Fluid Mechanics, 1972, 52(1):113-135.

文章导航

/