流体力学与飞行力学

跨声速多级压气机中的非定常流场频域分析

  • 赵军 ,
  • 刘宝杰
展开
  • 1. 中国民航飞行学院 航空工程学院, 广汉 618307;
    2. 北京航空航天大学 能源与动力工程学院, 北京 100083
赵军 男,博士,高级工程师。主要研究方向:叶轮机械内复杂流动研究。Tel:0838-5182503 E-mail:491452660@qq.com

收稿日期: 2015-10-22

  修回日期: 2016-01-08

  网络出版日期: 2016-01-12

基金资助

国家自然科学基金(51306201);四川省教育厅自然科学科研项目(16ZB0035);中国民用航空飞行学院科学研究基金(J2014-38,J2015-28)

Frequency-domain analysis of unsteady flow in multi-stage transonic compressor

  • ZHAO Jun ,
  • LIU Baojie
Expand
  • 1. Aviation Engineering Institute, Civil Aviation Flight University of China, Guanghan 618307, China;
    2. School of Energy and Power Engineering, Beihang University, Beijing 100083, China

Received date: 2015-10-22

  Revised date: 2016-01-08

  Online published: 2016-01-12

Supported by

National Natural Science Foundation of China (51306201);Natural Science Project of Sichuan Provincial Department of Education (16ZB0035);Science Research Foundation of Civil Aviation Flight University of China (J2014-38, J2015-28)

摘要

基于三维定常Denton程序发展了三维非定常计算程序,对三维跨声速多级压气机近失速点进行了定常与非定常数值模拟,并在此基础上对典型径向截面的非定常流场进行了频域分析。结果表明:通过对非定常频域图谱的研究,从一个全新的视角来分析非定常流场,可以看到一些在时域流场中很难直观看到的现象;轴向速度受尾迹的影响非常大,且在沿流向发展过程中,随着谐波阶次增加,幅值沿轴向的振荡幅度降低,幅值衰减的速度也加快;各叶排进口1阶谐波幅值在S3面内的分布受到下游叶排的势干扰,周向最大值点沿径向的走势与叶型的径向弯曲一致;气流密度、静压和总压受尾迹的影响较小,而气流静温、总温受尾迹的影响较大。

本文引用格式

赵军 , 刘宝杰 . 跨声速多级压气机中的非定常流场频域分析[J]. 航空学报, 2016 , 37(6) : 1798 -1808 . DOI: 10.7527/S1000-6893.2016.0012

Abstract

Three-dimensional unsteady solver has been developed based on three-dimensional Denton steady solver. Steady and unsteady numerical simulation have been conducted on multi-stage transonic compressor near stall point,and then frequency-domain analysis of unsteady flow field have been conducted on some typical radial sections. Frequency-domain research makes us analyze the unsteady flow field from a new perspective, and we can see some of the phenomena that are difficult to see in the time domain. The effect of the wake on axial velocity is very large, and in the developing process along the flow, with the increase of harmonic order, axial oscillation amplitude reduces, and the attenuation speed of the amplitude is also accelerating. The distribution of the 1st harmonic amplitude in the S3 plane is disturbed by the potential interference of the downstream blade row, and the maximum value point in the circumferential direction along the radial direction shaped as the blade profile. The effect of the wake on flow density, static pressure and total pressure is small, while the air static temperature and total temperature are greatly affected by the wake.

参考文献

[1] HE L, NING W. Efficient approach for analysis of unsteady viscous flows in turbomachines[J]. AIAA Journal, 1998, 36(11):2005-2012.
[2] CHEN T, VASANTHAKUMAR P, HE L. Analysis of unsteady blade row interaction using nonlinear harmonic approach[J]. Journal of Propulsion and Power, 2001, 17(3):651-658.
[3] ALEXANDER P, BORIS L. Small disturbance navier-stokes method:Efficient tool for predicting unsteady air loads[J]. Journal of Aircraft, 2006, 43(1):17-29.
[4] GABRIEL S, MEHMET I,ABDULNASER I, et al. A multi-blade-row linearised analysis method for flutter and forced response predictions in turbomachinery:ASME GT2006-90789[R]. New York:ASME, 2006.
[5] MAGNUS S, ERIKSSON L E. Modeling unsteady flow effects in a 3d transonic compressor:ASME GT2005-68149[R]. New York:ASME, 2005.
[6] VILMIN S, LORRAIN E, HIRSCH C. Unsteady flow modeling across the rotor/stator interface using the nonlinear harmonic method:ASME GT2006-90210[R]. New York:ASME, 2006.
[7] 刘波, 王雷, 黄建. 非线性谐波法在双级对转压气机中的进一步校检[J]. 航空动力学报, 2013, 28(6):1333-1341. LIU B,WANG L, HUANG J. Further validation of nonlinear harmonic method in two-stage counter-rotating compressor[J]. Journal of Aerospace Power, 2013,28(6):1333-1341(in Chinese).
[8] 王英锋, 胡骏, 罗标能, 等. 上游叶片尾迹对转子叶片非定常表面压力频谱特性的影响研究[J]. 航空动力学报, 2006, 21(4):693-699. WANG Y F, HU J, LUO B N, et al. Effects of the up-stream blade wakes on the spectrum of rotor blade unsteady surface pressure[J]. Journal of Aerospace Power, 2006, 21(4):693-699(in Chinese).
[9] 魏宝锋, 金东海, 桂幸民. 离心叶轮与扩压器相互干扰数值模拟[J]. 航空学报, 2012, 33(7):1173-1180. WEI B F, JIN D H, GUI X M. Numerical simulation of impeller-diffuser interaction in centrifugal compressor[J]. Acta Aeronautica et Astronautica Sinica,2012,33(7):1173-1180(in Chinese).
[10] 赵军, 柳阳威, 刘宝杰. NASA67级非定常流场的频域分析[J]. 航空动力学报, 2007, 22(8):1371-1377. ZHAO J, LIU Y W,LIU B J. Frequency-domain analysis of NASA67 unsteady flow field[J]. Journal of Aerospace Power,2007, 22(8):1371-1377(in Chinese).
[11] DENTON J D. The use of a distributed body force to simulate viscous effects in 3D flow calculations:ASME 86-GT-144[R]. New York:ASME, 1986.
[12] 陈懋章. 风扇/压气机技术发展和对今后工作的建议[C]//21世纪航空动力发展研讨会.北京:中国航空学会动力专业分会, 2000:74-87. CHEN M Z. Fan/Compressor technology development and the suggestions on future research[C]//Symposium on the Proceedings of Aero-engine in 21st Century. Beijing:Propulsion Branch of CSAA, 2000:74-87(in Chinese).
[13] 刘宝杰, 邹正平, 严明, 等. 叶轮机计算流体动力学技术现状与发展趋势[J]. 航空学报, 2002, 23(5):394-404. LIU B J, ZOU Z P, YAN M, et al. Present status and future development of CFD in turbomachinery[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(5):394-404(in Chinese).
[14] 邹正平, 徐力平. 叶轮机三维非定常流动数值模拟的研究[J]. 航空学报, 2001, 22(1):10-14. ZOU Z P, XU L P.Numerical study of the 3-D unsteady flow in turbomachinery stages[J]. Acta Aeronautica et Astronautica Sinica, 2001, 22(1):10-14(in Chinese).
[15] 周燕佩, 徐力平. 计算流体动力学在航空叶轮机械中的应用[C]//21世纪航空动力发展研讨会. 北京:中国航空学会动力专业分会, 2000:100-104. ZHOU Y P, XU L P. CFD application on aero-turbomachinery[C]//Symposium on the Proceedings of Aero-engine in 21st Century. Beijing:Propulsion Branch of the CSAA, 2000:100-104(in Chinese).
[16] DENTON J D. The calculation of three-dimensional viscous flow through multistage turbomachines[J]. Journal of Turbomachinery, 1992, 114(1):18-26.
[17] JAMESON A. Time dependent calculation using multigrid with application to unsteady flows past airfoils and wings:AIAA-1991-1596[R]. Reston:AIAA, 1991.
[18] HE L. Analysis of rotor-rotor and stator-stator interferences in multi-stage turbomachines[J]. Journal of Turbomachinery, 2002, 124(5):564-571.
[19] RHIE C M. Development and application of a multistage navier-stokes solver, Part 1:Multistage modeling using body-forces and deterministic stresses:ASME paper 95-GT-342[R]. New York:ASME, 1995.
[20] RHIE C M. Development and application of a multistage navier-stokes solver, Part 2:Application to a high pressure compressor design:ASME paper 95-GT-343[R]. New York:ASME, 1995.
[21] ADAMCZYK J J. Model equation for simulation flows in multistage turbomachinery:ASME paper 85-GT-226[R]. New York:ASME, 1985.

文章导航

/