流体力学与飞行力学

基于POD和DMD方法的跨声速抖振模态分析

  • 寇家庆 ,
  • 张伟伟 ,
  • 高传强
展开
  • 西北工业大学 航空学院, 西安 710072
寇家庆 男,硕士研究生。主要研究方向:气动力降阶模型,非定常空气动力学。 Tel.: 029-88491342 E-mail: koujiaqing93@163.com;高传强 男,博士研究生。主要研究方向:流固耦合力学,跨声速气动弹性力学。 Tel.: 029-88491342 E-mail: gao_800866@163.com

收稿日期: 2015-11-02

  修回日期: 2015-11-26

  网络出版日期: 2016-01-11

基金资助

国家自然科学基金(11572252);新世纪优秀人才支持计划(NCET-13-0478)

Modal analysis of transonic buffet based on POD and DMD method

  • KOU Jiaqing ,
  • ZHANG Weiwei ,
  • GAO Chuanqiang
Expand
  • School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2015-11-02

  Revised date: 2015-11-26

  Online published: 2016-01-11

Supported by

National Natural Science Foundation of China (11572252); Program for New Century Excellent Talents in University (NCET-13-0478)

摘要

跨声速抖振现象是由于非定常跨声速流动中激波的自激振荡而引起的结构强迫振荡,这种现象在跨声速飞行器中普遍存在,对飞机的结构强度和疲劳寿命有不利影响。基于模态分解的分析方法是进一步发展抖振控制手段的有效工具。本文通过两类典型模态分析方法(本征正交分解(POD)和动态模态分解(DMD))对OAT15A翼型的跨声速抖振现象进行分析,通过对模态频率、翼面压力分布、流场重构误差等方面的研究,将两种模态分解方法进行对比。发现基于频率特征的DMD方法能够准确捕捉抖振的临界稳定特征和抖振主频的典型模态,同时能够更准确反映流场变量在激波间断附近随时间的变化过程;而POD方法尽管在流场重构时具有较小的总体误差,但对激波附近压强随时间的变化历程拟合较差。

本文引用格式

寇家庆 , 张伟伟 , 高传强 . 基于POD和DMD方法的跨声速抖振模态分析[J]. 航空学报, 2016 , 37(9) : 2679 -2689 . DOI: 10.7527/S1000-6893.2016.0003

Abstract

Transonic buffet is due to the self-sustained oscillations of shock wave in the unsteady transonic flow, which induces the forced periodically motion of the structure. For aircraft in transonic flow, this phenomenon exists commonly, leading to negative effects on the structural strength and fatigue life. Analysis based on mode decomposition is an effective tool for developing buffet control design. In this paper, two typical mode analysis methods, i.e., proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD), are utilized for analyzing the transonic buffet of the OAT15A airfoil. Two techniques are compared by studying the frequency of dominant modes, pressure distributions on the surface and the errors of flow construction. Results indicate that because of the consideration of frequency characteristics in DMD, the critical stable characteristics and dominant frequency of transonic buffet are well captured. Besides, DMD method accurately mimic the time evolutions of flow variables near the shock wave. Although POD method provides relatively small errors for flow reconstruction, it performs worse than DMD near the shock wave region, because of the poorer approximation of pressure evolution in time.

参考文献

[1] 张伟伟,高传强,叶正寅. 机翼跨声速抖振研究进展[J]. 航空学报, 2015, 36(4): 1056-1075. ZHANG W W, GAO C Q, YE Z Y. Research advances of wing/airfoil transonic buffet[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4): 1056-1075 (in Chinese).
[2] LEE B H K. Oscillatory shock motion caused by transonic shock boundary-layer interaction[J]. AIAA Journal, 1990, 28(5): 942-944.
[3] MCDEVITT J B, OKUNO A F. Static and dynamic pressure measurements on a NACA 0012 airfoil in the Ames High Reynolds Number Facility: NASA TP-2485[R]. Washington, D.C.: NASA, 1985.
[4] JACQUIN L, MOLTON P, DECK S, et al. Experimental study of shock oscillation over a transonic supercritical profile[J]. AIAA Journal, 2009, 47(9): 1985-1994.
[5] GAO C Q, ZHANG W W, LIU Y L, et al. Numerical study on the correlation of transonic single-degree-of-freedom flutter and buffet[J]. Science China Physics, Mechanics and Astronomy, 2015, 58(8): 084701-1-084701-12.
[6] DECK S. Numerical simulation of transonic buffet over a supercritical airfoil[J]. AIAA Journal, 2005, 43(7): 1556-1566.
[7] CHEN L W, XU C Y, LU X Y. Numerical investigation of the compressible flow past an aerofoil[J]. Journal of Fluid Mechanics, 2010, 643(1): 97-126.
[8] LEE B H K. Self-sustained shock oscillations on airfoils at transonic speeds[J]. Progress in Aerospace Sciences, 2001, 37(2): 147-196.
[9] 张伟伟, 叶正寅. 基于CFD的气动力建模及其在气动弹性中的应用[J]. 力学进展, 2008, 38(1): 77-86. ZHANG W W, YE Z Y. On unsteady aerodynamic modeling based on CFD technique and its applications on aeroelastic analysis[J]. Advances in Mechanics, 2008, 38(1): 77-86 (in Chinese).
[10] ZHANG W W, YE Z Y. Effect of control surface on airfoil flutter in transonic flow[J]. Acta Astronautica, 2010, 66(7-8): 999-1007.
[11] ZHANG W W, LI X T, YE Z Y, et al. Mechanism of frequency lock-in in vortex-induced vibrations at low Reynolds numbers[J]. Journal of Fluid Mechanics, 2015, 783(1): 72-102.
[12] 寇家庆, 张伟伟, 叶正寅. 基于分层思路的动态非线性气动力建模方法[J]. 航空学报, 2015, 36(12): 3785-3797. KOU J Q, ZHANG W W, YE Z Y. Dynamic nonlinear aerodynamics modeling method based on layered model[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(12): 3785-3797 (in Chinese).
[13] ZHANG W W, WANG B B, YE Z Y, et al. Efficient method for limit cycle flutter analysis by nonlinear aerodynamic reduced-order models[J]. AIAA Journal, 2012, 50(5): 1019-1028.
[14] KOU J Q, ZHANG W W. An approach to enhance the generalization capability of nonlinear aerodynamic reduced-order models[J]. Aerospace Science and Technology, 2016, 49(1): 197-208.
[15] NOACK B R, AFANASIEV K, MORZYNSKI M, et al. A hierarchy of low-dimensional models for the transient and post-transient cylinder wake[J]. Journal of Fluid Mechanics, 2003, 497(1): 335-363.
[16] ROWLEY C W. Model reduction for fluids, using balanced proper orthogonal decomposition[J]. International Journal of Bifurcation and Chaos, 2005, 15(3): 997-1013.
[17] ROWLEY C W, MEZI? I, BAGHERI S, et al. Spectral analysis of nonlinear flows[J]. Journal of Fluid Mechanics, 2009, 641(1): 115-127.
[18] SCHMID P J. Dynamic mode decomposition of numerical and experimental data[J]. Journal of Fluid Mechanics, 2010, 656(1): 5-128.
[19] 李静, 张伟伟, 李新涛. 失稳初期的低雷诺数圆柱绕流POD-Galerkin建模方法研究[J]. 西北工业大学学报, 2015, 33(4): 596-602. LI J, ZHANG W W, LI X T. Researching method of building flow field of initial development stage of low Reynolds number flow past a circular cylinder[J]. Journal of Northwestern Polytechnical University, 2015, 33(4): 596-602 (in Chinese).
[20] WAN Z H, ZHOU L, WANG B F, et al. Dynamic mode decomposition of forced spatially developed transitional jets[J]. European Journal of Mechanics B/Fluids, 2015, 51(1): 16-26
[21] 潘翀, 陈皇, 王晋军. 复杂流场的动力学模态分解[C]//第八届全国实验流体力学学术会议论文集. 广州: 中国科学院南海海洋研究所, 2010: 77-82. PAN C, CHEN H, WANG J J. Dynamical mode decomposition of complex flow field[C]//8th National Conference on Experimental Fluid Mechanics. Guangzhou: South China Sea Institute of Oceanology, 2010: 77-82 (in Chinese).
[22] MARIAPPAN S, GARDNER A D, RICHTER K, et al. Analysis of dynamic stall using dynamic mode decomposition technique[J]. AIAA Journal, 2014, 52(11): 2427-2439.
[23] MOHAN A T, GAITONDE D V, VISBAL M R. Model reduction and analysis of deep dynamic stall on a plunging airfoil using dynamic mode decomposition: AIAA-2015-1058[R]. Reston: AIAA, 2015.
[24] CHEN K K, TU J H, ROWLEY C W. Variants of dynamic mode decomposition: Boundary condition, Koopman, and Fourier analyses[J]. Journal of Nonlinear Science, 2012, 22(6): 887-915.
[25] WYNN A, PEARSON D, GANAPATHISUBRAMANI B, et al. Optimal mode decomposition for unsteady flows[J]. Journal of Fluid Mechanics, 2013, 733(1): 473-503.
[26] JOVANOVI? M R, SCHMID P J, NICHOLS J W. Sparsity-promoting dynamic mode decomposition[J]. Physics of Fluids, 2014, 26(2): 024103-1-024103-22.
[27] TU J H, ROWLEY C W, LUCHTENBERG D M, et al. On dynamic mode decomposition: Theory and applications [J]. Journal of Computational Dynamics, 2014, 1(2): 391-421.
[28] BRUNET V. Computational study of buffet phenomenon with unsteady RANS equations: AIAA-2003-3679[R]. Reston: AIAA, 2003.

文章导航

/