电子与控制

一种FMCW SAR地面运动目标谱图域参数估计方法

  • 梁颖 ,
  • 张群 ,
  • 武勇 ,
  • 顾福飞 ,
  • 杨秋
展开
  • 1. 空军工程大学 信息与导航学院, 西安 710077;
    2. 信息感知技术协同创新中心, 西安 710077;
    3. 中国人民解放军95980部队, 襄阳 441100;
    4. 陕西省计量科学研究院, 西安 710065
梁颖,男,博士研究生。主要研究方向:雷达信号处理。Tel.:029-84791777 E-mail:liangying8633@163.com;张群,男,博士,教授,博士生导师。主要研究方向:雷达成像与目标识别。Tel.:029-84791751 E-mail:zhangqunnus@gmail.com

收稿日期: 2015-06-08

  修回日期: 2015-07-22

  网络出版日期: 2015-12-21

基金资助

国家自然科学基金(61471386)

A ground moving target parameter estimation method in spectrogram for FMCW SAR

  • LIANG Ying ,
  • ZHANG Qun ,
  • WU Yong ,
  • GU Fufei ,
  • YANG Qiu
Expand
  • 1. School of Information and Navigation, Air Force Engineering University, Xi'an 710077, China;
    2. Collaborative Innovation Center of Information Sensing and Understanding, Xi'an 710077, China;
    3. Unit 95980 of PLA, Xiangyang 441100, China;
    4. Shaanxi Institute of Metrology, Xi'an 710065, China

Received date: 2015-06-08

  Revised date: 2015-07-22

  Online published: 2015-12-21

Supported by

National Natural Science Foundation of China (61471386)

摘要

对调频连续波(FMCW)合成孔径雷达(SAR)地面运动目标的参数估计方法进行了研究,采用相位中心偏置天线(DPCA)技术对地杂波进行抑制,分析了载机及地面运动目标连续运动对回波信号的影响,推导了采用DPCA技术引入的回波慢时间包络(STE)项与地面运动目标参数之间的关系。在此基础上,提出了一种地面运动目标谱图域参数估计方法,该方法首先利用Radon变换在谱图域估计导致回波信号距离走动的目标等效径向速度,并对距离走动进行校正;其次,在谱图域中提取运动目标回波幅度,根据STE项引起的回波幅度变化与目标方位向速度之间的关系,估计目标的方位向速度,并进一步求解相应的目标径向速度。所提方法能够在谱图域完成地面运动目标二维速度估计,最后的仿真实验验证了所提方法的有效性和可行性。

本文引用格式

梁颖 , 张群 , 武勇 , 顾福飞 , 杨秋 . 一种FMCW SAR地面运动目标谱图域参数估计方法[J]. 航空学报, 2016 , 37(5) : 1614 -1621 . DOI: 10.7527/S1000-6893.2015.0325

Abstract

The ground moving target parameter estimation method for frequency modulated continuous wave (FMCW) synthetic aperture radar (SAR) is studied. The displaced phase center antenna (DPCA) technique is utilized to cancel the ground clutter, then the influence of the platform and target continuous movement to the echo are analysed, and the relationship between slow time envelope (STE) term and ground moving target parameter is deduced. On this basis, a ground moving target parameter estimation method in spectrogram is proposed. Firstly, the Radon transform is utilized to estimate the equivalent across-track velocity which leads to the range walk, and then the range walk is corrected. Secondly, amplitude of the received signals is extracted from spectrogram, and the change of the amplitude is related to the STE. According to the relationship between the amplitude and along-track velocity, the along-track velocity of target is estimated. Furthermore the across-track velocity of target is calculated. The 2D velocity of ground moving target can be accurately estimated in spectrogram with the proposed method. Finally, the feasibility and effectiveness of the proposed method are proved by the simulation results.

参考文献

[1] META A, HOOGEBOOM P, LIGTHART L P. Signal processing for FMCW SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11):3519-3532.
[2] META A, HOOGEBOOM P. Development of signal processing algorithms for high resolution airborne millimeter wave FMCW SAR[C]//IEEE International Radar Conference. Piscataway, NJ:IEEE Press, 2005:326-331.
[3] LIU Y, DENG Y, WANG R, et al. Efficient and precise frequency-modulated continuous wave synthetic aperture radar raw signal simulation approach for extended scenes[J]. IET Radar Sonar Navigation, 2012, 6(9):858-866.
[4] RIBALTA A. Time-domain reconstruction algorithms for FMCW-SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(3):396-400.
[5] STOVE A G. Linear FMCW radar techniques[J]. IEE Proceedings Radar Sonar Navigation, 1992, 139(5):343-350.
[6] 张双喜, 李军, 张磊, 等. 基于级数反演的斜视FMCW SAR成像算法研究[J]. 电子学报, 2013, 41(3):532-538. ZHANG S X, LI J, ZHANG L, et al. Frequency modulated continuous wave squint synthetic aperture radar imaging algorithm based on series reversion[J]. Acta Electronica Sinica, 2013, 41(3):532-538(in Chinese).
[7] 梁颖, 张群, 杨秋, 等. 弹载调频连续波合成孔径雷达大斜视成像方法研究[J]. 电波科学学报, 2014, 29(6):1115-1121. LIANG Y, ZHANG Q, YANG Q, et al. High squint imaging method for missile-borne FMCW SAR[J]. Chinese Journal of Radio Science, 2014, 29(6):1115-1121(in Chinese).
[8] META A, HOOGEBOOM P. Signal processing algorithms for FMCW moving target indicator synthetic aperture radar[C]//Proceedings of IGARSS, 2005:316-319.
[9] 梁毅, 周峰, 邢孟道, 等. 采用调频连续波的高速动目标检测方法[J]. 西安电子科技大学学报:自然科学版, 2008, 35(4):586-591. LIANG Y, ZHOU F, XING M D, et al. High speed ground moving target detection research using triangular FMCW modulation[J]. Journal of Xidian University:Natural Science Edition, 2008, 35(4):586-591(in Chinese).
[10] 梁毅, 王虹现, 邢孟道, 等. 调频连续波SAR慢速动目标参数估计与成像[J]. 系统工程与电子技术, 2011, 33(5):1001-1006. LIANG Y, WANG H X, XING M D, et al. Slow ground moving target parameter estimation and imaging in FMCW SAR[J]. Systems Engineering and Electronics, 2011, 33(5):1001-1006(in Chinese).
[11] 罗运华, 宋红军, 王宇, 等. 基于精确二维频谱的调频连续波SAR动目标特性分析[J]. 电子与信息学报, 2013, 34(8):1834-1840. LUO Y H, SONG H J, WANG Y, et al. Characteristics analysis of moving target in frequency-modulation continuous-wave SAR based on an accurate 2-D spectrum[J]. Journal of Electronics and Information Technology, 2013, 34(8):1834-1840(in Chinese).
[12] 王金伟, 周峰, 吴玉峰, 等. FMCW-SAR体制下快速运动目标检测与成像方法[J]. 电子与信息学报, 2014, 36(11):2684-2690. WANG J W, ZHOU F, WU Y F, et al. Approach for fast-moving target detection and imaging in FMCW SAR[J]. Journal of Electronics and Information Technology, 2014, 36(11):2684-2690(in Chinese).
[13] LIVINGSTONE C E, SIKANETA I, GIERULL C H, et al. An airborne synthetic aperture radar (SAR) experiment to support RADARSAT-2 ground moving target indication (GMTI)[J]. Canadian Journal of Remote Sensing, 2002, 28(6):794-813.
[14] 保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京:电子工业出版社, 2005:318-319. BAO Z, XING M D, WANG T. Radar imaging technique[M]. Beijing:Publishing House of Electronics Industry, 2005:318-319(in Chinese).
[15] 王肖洋, 高贵, 周石琳, 等. 一种基于双通道DPCA的SAR-GMTI杂波抑制方法[J]. 雷达学报, 2014, 3(2):241-248. WANG X Y, GAO G, ZHOU S L, et al. A clutter suppression approach for SAR-GMTI based on dual-channel DPCA[J]. Journal of Radars, 2014, 3(2):241-248(in Chinese).
[16] 朱丰, 张群, 冯有前, 等. 压缩感知在ISAR谱图压缩重构中的应用[J]. 信号处理, 2010, 26(10):1583-1587. ZHU F, ZHANG Q, FENG Y Q, et al. Compressive sensing in ISAR spectrogram compressing and reconstruction[J]. Signal Processing, 2010, 26(10):1583-1587(in Chinese).
[17] 张伟, 童创明, 张群, 等. 基于DPCA杂波抑制的地面振动目标微多普勒提取[J]. 系统工程与电子技术, 2011, 33(4):738-741. ZHANG W, TONG C M, ZHANG Q, et al. Micro-Doppler extraction of ground vibrating targets based on SAR/DPCA technique[J]. Systems Engineering and Electronics, 2011, 33(4):738-741(in Chinese).
[18] WOOD J C, BARRY D T. Radon transformation of time-frequency distributions for analysis of multicomponent signals[J]. IEEE Transactions on Signal Processing, 1994, 42(11):3166-3177.
[19] 杨剑, 许人灿, 鲍庆龙, 等. 基于熵最小准则的ISAR成像高速运动补偿实现方法[J]. 信号处理, 2009, 25(12):1861-1866. YANG J, XU R C, BAO Q L, et al. The implemental methods of high velocity compensation in ISAR imaging based on entropy minimization[J]. Signal Processing, 2009, 25(12):1861-1866(in Chinese).

文章导航

/