复合材料加筋板剪切后屈曲分析与优化设计
收稿日期: 2015-06-16
修回日期: 2015-12-05
网络出版日期: 2015-12-14
基金资助
国家"863"计划(2012AA112201)
Optimization design and analysis of stiffened composite panels in post-buckling under shear
Received date: 2015-06-16
Revised date: 2015-12-05
Online published: 2015-12-14
Supported by
National High-tech Research and Development Program of China (2012AA112201)
为了充分利用复合材料加筋板的后屈曲承载能力,针对复合材料加筋板的后屈曲行为开展优化设计方法的研究具有重要意义。详细探讨了筋条尺寸及密度等参数对承受面内剪切载荷作用下的复合材料双向加筋板屈曲后屈曲的影响规律。建立了复合材料加筋板考虑后屈曲响应的结构分级优化方法:在一级优化中以结构几何尺寸为设计变量,使用响应面法(RSM)拟合出结构后屈曲响应的全局近似函数,结果显示,加筋缘条的宽度及加筋的密度对屈曲承载能力有重要影响;在二级优化中采用遗传算法(GA)对复合材料铺层顺序进行优化,经过两级优化后的复合材料加筋板相比于初始设计在质量减少了3%的同时,线性屈曲位移提高了8.86倍,线性屈曲模态由局部屈曲改善为整体屈曲,同时结构的后屈曲承载能力提高了8.7%。基于解决旅行商问题(TSP)的遗传算法被调整用于固定铺层厚度的复合材料铺层顺序优化问题,经优化,结构线性屈曲特征值提高了12.76%,表明了优化方法的可行性。
王燕 , 李书 , 许秋怡 , 马骏 . 复合材料加筋板剪切后屈曲分析与优化设计[J]. 航空学报, 2016 , 37(5) : 1512 -1525 . DOI: 10.7527/S1000-6893.2015.0329
In order to make full use of post-buckling load-bearing capacity of stiffened composite panel, it is meaningful to carry out research about the optimization strategy of stiffened composite panel especially in terms of its post-buckling behavior. The geometry parameter's influence on the buckling and post-buckling behavior of a bidirectional stiffened composite panel under in-plane shear is discussed in detail in this paper. Multi-level optimization including post-buckling capacity for composite stiffened panels under in-plane shear is presented in this article. In the 1st stage optimization, the geometry parameters are chosen as the design variables and the response surface method (RSM) is utilized to establish the global approximate function of the structure's post-buckling response. Results showed that the width and density of the stiffeners have important influence on the buckling bearing capacity. In the 2nd stage optimization, genetic algorithm (GA) is applied to optimize the stack sequence of the composite plies. The optimized structure shows a level of buckling displacement 8.86 times higher than that observed in the original panel and the mass decreased by 3% at the same time. The buckling mode transforms from early local buckling to global buckling, and the ultimate load capacity has also improved by 8.7% at the same time. Genetic algorithm dealing with the traveling salesman problem (TSP) is modified to solve the stack sequence optimization problem with fixed thickness. The optimized buckling eigenvalue has improved by 12.76%, which proves the validity and feasibility of the algorithm.
[1] ORIFICI A C, THOMSON R S, DEGENHARDT R, et al. Degradation investigation in a postbuckling composite stiffened fuselage panel[J]. Composite Structures, 2008, 82(2):217-224.
[2] ANYFANTIS K N, TSOUVALIS N G. Post buckling progressive failure analysis of composite laminated stiffened panels[J]. Applied Composite Materials, 2012, 19(3-4):219-236.
[3] ORIFICI A C, ALBERDI I O D Z, THOMSON R S, et al. Compression and post-buckling damage growth and collapse analysis of flat composite stiffened panels[J]. Composites Science & Technology, 2008, 68(15-16):3150-3160.
[4] 刘璐, 关志东, 徐荣章, 等. 脱胶缺陷尺寸对复合材料加筋板屈曲及后屈曲特性的影响[J]. 复合材料学报, 2014, 31(3):749-758. LIU L, GUAN Z D, XU R Z, et al. Effects of debond size on buckling and post-buckling behaviors of composite stiffened panels[J]. Acta Materiae Compositae Sinica, 2014, 31(3):749-758(in Chinese).
[5] 刘从玉. 复合材料加筋板的屈曲后屈曲分析及承载能力研究[D]. 南京:南京航空航天大学, 2009:8-15. LIU C Y. Buckling, post-buckling and load-carrying capacity analysis of stiffened composite panels[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2009:8-15(in Chinese).
[6] AMBUR D R, JAUNKY N, HILBURGER M W, et al. Progressive failure studies of stiffened panels subjected to shear loading[J]. Composite Structures, 2004, 65(2):129-142.
[7] MALLELA U K, UPADHYAY A. Buckling of laminated composite stiffened panels subjected to in-plane shear:A parametric study[J]. Thin-Walled Structures, 2006, 44(3):354-361.
[8] ARBELO M A, ALMEIDA S F M D, DONADON M V. An experimental and numerical analysis for the post-buckling behavior of composite shear webs[J]. Composite Structures, 2011, 93(2):465-473.
[9] WANG W, GUO S, CHANG N, et al. Optimum buckling design of composite stiffened panels using ant colony algorithm[J]. Composite Structures, 2010, 92(3):712-719.
[10] FALZON B G, FAGGIANI A. The use of a genetic algorithm to improve the postbuckling strength of stiffened composite panels susceptible to secondary instabilities[J]. Composite Structures, 2012, 94(3):883-895.
[11] SOBIESZCZANSKI-SOBIESKI J, HAFTKA R T. Interdisciplinary and multilevel optimum design[M]//Computer Aided Optimal Design:Structural and Mechanical Systems. Berlin Heidelberg:Springer, 1987:655-701.
[12] LIU B, HAFTKA R T, AKGüN M A. Two-level composite wing structural optimization using response surfaces[J]. Structural & Multidisciplinary Optimization, 2000, 20(2):87-96.
[13] HANSEN L U, HORST P. Multilevel optimization in aircraft structural design evaluation[J]. Computers & Structures, 2008, 86(1):104-118.
[14] BACARREZA O, ALIABADI M H, APICELLA A. Robust design and optimization of composite stiffened panels in post-buckling[J]. Structural & Multidisciplinary Optimization, 2014, 51(2):409-422.
[15] JU S, SHENOI R A, JIANG D, et al. Multi-parameter optimization of lightweight composite triangular truss structure based on response surface methodology[J]. Composite Structures, 2013, 97(2):107-116.
[16] LANZI L, GIAVOTTO V. Post-buckling optimization of composite stiffened panels:Computations and experiments[J]. Composite structures, 2006, 73(2):208-220.
[17] MCKAY M D, BECKMAN R J, CONOVER W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 2000, 42(1):55-61.
[18] CARRERE N, ROLLET Y, LEROY F, et al. Efficient structural computations with parameters uncertainty for composite applications[J]. Composites Science & Technology, 2009, 69(9):1328-1333.
[19] RIKARDS R, ABRAMOVICH H, KALNINS K, et al. Surrogate modeling in design optimization of stiffened composite shells[J]. Composite Structures, 2006, 73(2):244-251.
[20] 鲁大伟, 李书. 应用免疫遗传算法优化设计层合板铺层顺序[J]. 北京航空航天大学学报, 2005, 31(2):247-250. LU D W, LI S. Stacking sequence optimization of composite laminate applying genetic algorithm of immunity[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(2):247-250(in Chinese).
[21] 罗志军, 乔新. 基于遗传算法的复合材料层压板固有频率的铺层顺序优化[J]. 复合材料学报, 1997, 14(4):114-118. LUO Z J, QIAO X. Optimization of ply stack sequence for natural frequencies of composite laminates by genetics algorithm[J]. Acta Materiae Compositae Sinica, 1997, 14(4):114-118(in Chinese).
[22] 唐文艳, 顾元宪, 赵国忠. 复合材料层合板铺层顺序优化遗传算法[J]. 大连理工大学学报, 2004, 44(2):186-189. TANG W Y, GU Y X, ZHAO G Z. Stacking-sequence optimization of composite laminate plates by genetic algorithm[J]. Journal of Dalian University of Technology, 2004, 44(2):186-189(in Chinese).
[23] 陈江华, 林爱文, 杨明, 等. 遗传算法求解TSP问题的研究进展[J]. 昆明理工大学学报(理工版), 2003, 28(4):9-13. CHEN J H, LIN A W, YANG M, et al. Review of genetic algorithms for travelling salesman problem[J]. Journal of Kunming University of Science and Technology (Science and Technology), 2003, 28(4):9-13(in Chinese).
[24] CHANG F K, LESSARD L B. Damage tolerance of laminated composites containing an open hole and subjected to compressive lodingd:Part I-Analysis[J]. Journal of Composite Materials, 1991, 25(1):2-43.
[25] 刘从玉, 许希武, 陈康. 考虑脱粘的复合材料加筋板屈曲后屈曲及承载能力数值分析[J]. 复合材料学报, 2010, 27(6):158-166. LIU C Y, XU X W, CHEN K, et al. Buckling, post-buckling and collapse analysis of stiffened composite panels with debonding damage[J]. Acta Materiae Compositae Sinica, 2010, 27(6):158-166(in Chinese).sign evaluation[J].Computers & Structures, 2008, 86(1):104-118 [13]Bacarreza O, H.Aliabadi M,Apicella ARobust design and optimization of composite stiffened panels in post-buckling[J].Structural & Multidisciplinary Optimization, 2014, 51(2):409-422 [14]Ju S, Shenoi R A, Jiang D, et al.Multi-parameter optimization of lightweight composite triangular truss structure based on response surface methodology[J].Composite Structures, 2013, 97(2):107-116 [15]Carrere N, Rollet Y, Leroy F -, et al.Efficient structural computations with parameters uncertainty for composite applications[J].Composites Science & Technology, 2009, 69(9):1328-1333 [16]D.Mckay M,JBeckman& W. J. Conover R. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J].Technometrics, 2000, 42(1):55-61 [17]Rikards R, Abramovich H, Kalnins K, et al.Surrogate modeling in design optimization of stiffened composite shells[J].Composite Structures, 2006, 73(2):244-251 [18]鲁大伟, 李书.应用免疫遗传算法优化设计层合板铺层顺序[J].北京航空航天大学学报, 2005, 31(2):247-250 [19]罗志军, 乔新.基于遗传算法的复合材料层压板固有频率的铺层顺序优化[J].复合材料学报, 1997, 14(4):114-118 [20]唐文艳, 顾元宪, 赵国忠.复合材料层合板铺层顺序优化遗传算法[J].大连理工大学学报, 2004, 44(2):186-189 [21]陈江华, 林爱文, 杨明等.遗传算法求解问题的研究进展[J].昆明理工大学学报:理工版, 2003, 28(4):9-13 [22]刘从玉, 许希武, 陈康.考虑脱粘的复合材料加筋板屈曲后屈曲及承载能力数值分析[J].复合材料学报, 2010, 27(6):158-166
/
〈 | 〉 |