材料工程与机械制造

碳纤维复合材料超声扫描分层检测及评价方法

  • 魏莹莹 ,
  • 安庆龙 ,
  • 蔡晓江 ,
  • 陈明
展开
  • 1. 上海交通大学 机械与动力工程学院, 上海 200240;
    2. 上海航天控制技术研究所, 上海 201109
魏莹莹,女,博士研究生。主要研究方向:难加工复合材料缺陷机理研究和孔加工技术。Tel.:021-34206824,E-mail:yywei66@163.com;陈明,男,博士,教授,博士生导师。主要研究方向:高速切削/高速磨削理论与应用技术,难加工材料加工与精密加工。Tel.:021-34206317,E-mail:mchen@sjtu.edu.cn

收稿日期: 2015-10-19

  修回日期: 2015-11-30

  网络出版日期: 2015-12-08

基金资助

国家自然科学基金(51475298);国家“863”计划(2013AA040104)

CFRP ultrasonic scan delamination detection and evaluation method

  • WEI Yingying ,
  • AN Qinglong ,
  • CAI Xiaojiang ,
  • CHEN Ming
Expand
  • 1. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
    2. Shanghai Institute of Spaceflight Control Technology, Shanghai 201109, China

Received date: 2015-10-19

  Revised date: 2015-11-30

  Online published: 2015-12-08

Supported by

National Natural Science Foundation of China (51475298); National High-tech Research and Development Program of China (2013AA040104)

摘要

由于碳纤维增强复合材料(CFRP)具有各向异性的特点,在其钻削加工中极易形成分层、撕裂以及毛刺等加工缺陷,而分层对碳纤维层合板构件的性能影响最大,因而建立一套准确的针对分层缺陷的检测、描述以及评价方法对层合结构碳纤维复合材料的有效应用具有重大意义。从分层缺陷的形成机理出发,通过对现有分层缺陷的检测以及评价体系的分析,提出了基于高频超声扫描显微镜(SAM)来进行分层缺陷检测评价的三维体积分层因子评价方法,并针对T800/X850碳纤维单向层合板对该方法进行了定征试验,最后通过对实际加工孔的分层缺陷的评价,综合对比了三维体积分层因子评价方法与传统评价方法的应用效果。结果表明:分层缺陷是由力热耦合引起的层间粘结失效,出口处更为严重;用超声扫描显微镜检测分层,可检测不少于8层的碳纤维复合材料,至少可以清晰表达5层的内部分层特征;分层会发生隔层传播,并且两个相邻铺层为同向的层间结合强度最好,不易产生隔层传播;三维体积分层因子可以更准确清晰地评价复合材料层合结构的内部缺陷。

本文引用格式

魏莹莹 , 安庆龙 , 蔡晓江 , 陈明 . 碳纤维复合材料超声扫描分层检测及评价方法[J]. 航空学报, 2016 , 37(11) : 3512 -3519 . DOI: 10.7527/S1000-6893.2015.0324

Abstract

Because of the anisotropy, carbon fiber reinforced plastics (CFRP) materials are prone to form machining defects in drilling processes, such as delamination, tearing and burr, among which delamination has the most important influence on composites properties. Therefore, it is essential to establish a set of methods to detect and evaluate delamination clearly. Based on the mechanism of delamination and analysis of current detection and evaluation methods, a kind of 3-D delamination factor evaluation method is proposed by high frequency scanning acoustic microscope (SAM), and delamination characteristics of T800/X850 are identified based on SAM. Finally, the results were also compared between 3-D delamination factor method and traditional methods. The results show that delamination defects are caused by mechanical-thermal coupling which may induce interlayer bonding failure and the exit is more serious. What's more, delamination of no less than 8 layers in CFRP could be detected by SAM and internal layered characteristics of at least five layers could be obviously detected. Delamination could be transferred to other layers and interfacial bonding strength shows the best when the adjacent layers are in the same orientation. Moreover, 3-D delamination factor could evaluate the internal defects of composite laminates more accurately.

参考文献

[1] 叶列平, 冯鹏. FRP在工程结构中的应用与发展[J]. 土木工程学报, 2006, 39(3):24-36. YE L P, FENG P. The application and development of FRP in engineering structure[J]. China Civil Engineering Journal, 2006, 39(3):24-36(in Chinese).
[2] 陈绍杰. 论我国先进复合材料产事业的发展[J]. 高科技纤维与应用, 2013, 38(1):1-11. CHEN S J. Research on the development of advanced CFRP in China[J]. Hi-Tech Fiber & Application, 2013, 38(1):1-11(in Chinese).
[3] ABRAO A M, FARIA P E, RUBIO J C C, et al. Drilling of fiber reinforced plastics:A review[J]. Journal of Materials Processing Technology, 2007, 186(1-3):1-7.
[4] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. DU S Y. Advanced composite materials and aerospace[J]. Acta Materiae Compositae Sinica, 2007, 24(1):1-12(in Chinese).
[5] 陈绍杰. 复合材料技术与大型飞机[J]. 航空学报, 2008, 29(3):605-610. CHEN S J. Composite materials technology and large aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3):605-610(in Chinese).
[6] SOUTIS C. Fibre reinforced composites in aircraft construction[J]. Progress in Aerospace Sciences, 2005, 41(2):143-151.
[7] WONG T, WU S, CROY G. An analysis of delamination in drilling composite materials[C]//14th National SAMPE Technical Conference, 1982, 47:481-483.
[8] STONE R, KRISHNAMURTHY K. A neural network thrust force controller to minimize delaminatio during drilling of graphite-epoxy laminates[J]. International Journal of Machine Tools and Manufacture, 1996, 36(9):985-1003.
[9] 王少萍. 大型飞机机载系统预测与健康管理关键技术[J]. 航空学报, 2014, 35(6):1459-1472. WANG S P. Prognostics and health management key technology of aircraft airborne system[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(6):1459-1472(in Chinese).
[10] LAZAR M B, XIROUCHAKIS P. Experimental analysis of drilling fiber reinforced composites[J]. International Journal of Machine Tools and Manufacture, 2011, 51(12):937-946.
[11] 侯波, 何宇廷, 崔荣洪, 等. 基于Ti/TiN薄膜传感器的飞机金属结构裂纹监测[J]. 航空学报, 2014, 35(3):878-884. HOU B, HE Y T, CUI R H, et al. Crack monitoring of aircraft metallic structures based on Ti/TiN film sensors[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3):878-884(in Chinese).
[12] 宋凯, 刘堂先, 李来平, 等. 航空发动机涡轮叶片裂纹的阵列涡流检测仿真[J]. 航空学报, 2014, 35(8):2355-2363. SONG K, LIU T X, LI L P, et al. Simulation research on aero-engine turbine blade cracks detection based on eddy current array[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(8):2355-2363(in Chinese).
[13] 马保全, 周正干. 航空航天复合材料结构非接触无损检测技术的进展及发展趋势[J]. 航空学报, 2014, 35(7):1787-1803. MA B Q, ZHOU Z G. Progress and development trends of composite structure evaluation using noncontact nondestructive testing techniques in aviation and aerospace industries[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7):1787-1803(in Chinese).
[14] KRISHNARAJ V, PRABUKARTHI A, RAMANATHAN A, et al. Optimization of machining parameters at high speed drilling of carbon fiber reinforced plastic (CFRP) laminates[J]. Composites Part B:Engineering, 2012, 43(4):1791-1799.
[15] TSAO C C, CHIU Y C. Evaluation of drilling parameters on thrust force in drilling carbon fiber reinforced plastic (CFRP) composite laminates using compound core-special drills[J]. International Journal of Machine Tools and Manufacture, 2011, 51(9):740-744.
[16] RAWAT S, ATTIA H. Wear mechanisms and tool life management of WC-Co drills during dry high speed drilling of woven carbon fibre composites[J]. Wear, 2009, 267(5-8):1022-1030.
[17] SHYHA I S, ASPINWALL D K, SOO S L, et al. Drill geometry and operating effects when cutting small diameter holes in CFRP[J]. International Journal of Machine Tools and Manufacture, 2009, 49(12-13):1008-1014.
[18] FARAZ A, BIERMANN D, WEINERT K. Cutting edge rounding:An innovative tool wear criterion in drilling CFRP composite laminates[J]. International Journal of Machine Tools and Manufacture, 2009, 49(15):1185-1196.
[19] LIU D, TANG Y, CONG W L. A review of mechanical drilling for composite laminates[J]. Composite Structures, 2012, 94(4):1265-1279.
[20] HOCHENG H, TSAO C C. The path towards delamination-free drilling of composite materials[J]. Journal of Materials Processing Technology, 2015, 167(2-3):251-264.
[21] SHYHA I, SOO S L, ASPINWALL D. Effect of laminate comfiguration and feed rate on cutting performance when drilling holes in carbon fibre reinforced plastic composites[J]. Journal of Materials Processing Technology, 2010, 210(8):1023-1034.

文章导航

/