电子与控制

基于压缩协作表示的辐射源识别算法

  • 周志文 ,
  • 黄高明 ,
  • 高俊
展开
  • 海军工程大学 电子工程学院, 武汉 430033
黄高明 男,博士,教授,博士生导师。主要研究方向:盲信号处理和无源探测。Tel:027-65461251,E-mail:hgaom@126.com;高俊 男,博士,教授,博士生导师。主要研究方向:数字信号处理和数字通信技术。Tel:027-65461126,E-mail:gaojunnj@163.com

收稿日期: 2015-07-13

  修回日期: 2015-11-19

  网络出版日期: 2015-12-07

基金资助

国家“863”计划(2014AAXXXX061)

Emitter recognition algorithm based on compressively collaborative representation

  • ZHOU Zhiwen ,
  • HUANG Gaoming ,
  • GAO Jun
Expand
  • College of Electronic Engineering, Naval University of Engineering, Wuhan 430033, China

Received date: 2015-07-13

  Revised date: 2015-11-19

  Online published: 2015-12-07

Supported by

National High-tech Research and Development Program of China (2014AAXXXX061)

摘要

针对低信噪比(SNR)条件下传统辐射源识别算法性能下降的问题,提出了基于压缩协作表示的识别算法,分别从特征提取和分类器设计两方面进行描述。首先将时域辐射源信号变换到二维时频域,通过图像处理方法提取高维特征列向量。经随机矩阵压缩到一定维度后,输入到提出的压缩协作表示分类器中得到识别结果。进而,对协作表示系数进行非负约束,提出了更符合实际应用场景的算法。仿真结果验证了所提算法的可行性与有效性,且在低信噪比条件下稳健性强、抗噪声干扰性能好、计算量较小、易于工程实现。

本文引用格式

周志文 , 黄高明 , 高俊 . 基于压缩协作表示的辐射源识别算法[J]. 航空学报, 2016 , 37(7) : 2251 -2258 . DOI: 10.7527/S1000-6893.2015.0313

Abstract

Aimed at performance decline of traditional emitter recognition algorithms under the low signal-to-noise ratio (SNR) conditions, an algorithm based on compressively collaborative representation is proposed, which is described from feature extraction and classifier design. The time-domain emitter signal is transformed into a 2-dimensional image through time-frequency analysis, and then a high-dimensional feature vector is extracted with image processing methods. After random compression, the features are input into the proposed classifiers to obtain recognition results. Furthermore, the non-negative constraint is posed to the collaborative representation coefficients, which makes the proposed algorithm more suitable for the practical applications. The simulation results verify the validity of the proposed algorithm and show that its robustness to noise is better when SNR is low and it can be easily realized in engineering due to the low computation burden.

参考文献

[1] LUNDÈN J, KOIVUNEN V. Automatic radar waveform recognition[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(1):124-136.
[2] LUND B B, COHEN L, CHEN V, et al. Time-frequency approach to radar detection, imaging, and classification[J]. IET Signal Processing, 2010, 4(4):325-328.
[3] ZENG D, ZENG X, LU G, et al. Automatic modulation classification of radar signals using the generalized time-frequency representation of Zhao, Atlas and Marks[J]. IET Radar, Sonar and Navigation, 2010, 5(4):507-516.
[4] WRIGHT J, YANG A Y, GANESH A, et al. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2):210-227.
[5] MA J, HUANG G M, ZUO W, et al. Robust radar waveform recognition algorithm based on random projections and sparse classification[J]. IET Radar, Sonar and Navigation, 2014, 8(4):290-296.
[6] ZHANG L, YANG M, FENG X C. Sparse representation or collaborative representation:Which helps face recognition?[C]//International Conference on Computer Vision, 2011:471-478.
[7] CHI Y J, PORIKLI F. Classification and boosting with multiple collaborative representations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(8):1519-1531.
[8] JIA S, SHEN L L, LI Q Q. Gabor feature-based collaborative representation for hyperspectral imagery classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2):1118-1129.
[9] LI W, DU Q, ZHANG F, et al. Collaborative-representation-based nearest neighbor classifier for hyperspectral imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(2):389-393.
[10] 龙泓琳, 皮亦鸣, 曹宗杰. 基于非负矩阵分解的SAR图像目标识别[J]. 电子学报, 2010, 38(6):1425-1429. LONG H L, PI Y M, CAO Z J. Non-negative matrix factorization for target recognition[J]. Acta Electronica Sinica, 2010, 38(6):1425-1429(in Chinese).
[11] 丁军, 刘宏伟, 王英华. 基于非负稀疏表示的SAR图像目标识别方法[J]. 电子与信息学报, 2014, 36(9):2194-2220. DING J, LIU H W, WANG Y H. SAR image target recognition based on non-negative sparse representation[J]. Journal of Electronics and Information Technology, 2014, 36(9):2194-2220(in Chinese).
[12] NADAV L, ELI M. Radar signals[M]. New York:John Wiley and Sons Inc., 2004:53-61.
[13] 张国柱. 雷达辐射源识别技术研究[D]. 长沙:国防科技大学, 2005:33-36. ZHANG G Z. Research on emitter identification[D]. Changsha:National University of Defense Technology, 2005:33-36(in Chinese).
[14] 邹兴文, 张葛祥, 李明, 等. 一种雷达辐射源信号分类新方法[J]. 数据采集与处理, 2009, 24(4):487-492. ZOU X W, ZHANG G X, LI M, et al. Novel method for classifying radar emitter signals[J]. Journal of Data Acquisition and Processing, 2009, 24(4):487-492(in Chinese).
[15] MAJUMDAR A, WARD R K. Robust classifiers for data reduced via random projections[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2010, 40(5):1359-1371.
[16] LIU Z H, ZHAO X H, HUANG T, et al. Enhanced collaborative representation based classification[C]//International Conference on Information and Automation, 2014:447-450.
[17] VO N, MORAN B, CHALLA S. Nonnegative-least-square classifier for face recognition[J]. Lecture Notes in Computer Science, 2009, 5553:449-456.
[18] 张贤达. 矩阵分析与应用[M]. 北京:清华大学出版社, 2013:330-335. ZHANG X D. Matrix analysis and applications[M]. Beijing:Tsinghua University Press, 2013:330-335(in Chinese).
[19] BINGHAM E, MANNILA H. Random projection in dimensionality reduction:Applications to image and text data[C]//International Conference on KDD, 2001:483-488.
[20] TROPP J A, GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12):4655-4666.
[21] KOH K, KIM S J, BOYD S. L1LS:Simple matlab solver for l1-regularized least squares problems[EB/OL]. (2007-08)[2015-09-20]. http://www.stanford.edu/~boyd/l1_ls.

文章导航

/