用于可压缩自由剪切流动的湍流混合长度
收稿日期: 2015-08-28
修回日期: 2015-11-04
网络出版日期: 2015-12-04
基金资助
航空发动机气动热力国家科技重点实验室基金(9140C410505150C41002)
Turbulence mixing length for compressible free shear flows
Received date: 2015-08-28
Revised date: 2015-11-04
Online published: 2015-12-04
Supported by
National Key Laboratory of Aircraft Engine Foundation of China (9140C410505150C41002)
抓住可压缩流动变密度特性,构造出基于有效涡量的三维von Karman混合长度。湍流模型采用仅依赖湍动能k的单方程KDO(Kinetic Dependent Only)模型,引入新构造的混合长度替换旧尺度得到CKDO模型。为了验证其描述可压缩自由剪切湍流的能力,选择无壁面束缚、密度梯度大和可压缩效应强的自由剪切混合层为算例,其对流马赫数Mac=0.8。计算结果表明,KDO模型对混合层的速度分布有着良好的控制和模拟,而经可压缩修正后的CKDO模型与原模型及其他可压缩修正模型相比,所计算的速度分布、主雷诺剪切力和混合层厚度与试验结果更加接近,说明了该混合长度对可压缩混合层这种自由剪切湍流有着良好的刻画能力。
徐晶磊 , 宋友富 , 张扬 , 白俊强 . 用于可压缩自由剪切流动的湍流混合长度[J]. 航空学报, 2016 , 37(6) : 1841 -1850 . DOI: 10.7527/S1000-6893.2015.0300
Seizing compressible flow variable density characteristics,a three-dimensional von Karman mixing length scale based on the effective vorticity has been constructed. This paper adopts a single-equation turbulence KDO (Kinetic Dependent Cnly) model which depends only on the turbulent kinetic energy equation, and introduces a new structure which replaces the old mixing length scale to obtain CKDO model. Then in order to verify its ability to describe compressible free shear turbulence, we select the compressible mixing layer of no wall bondage, large density gradient and strong compressibility effects as an example, whose convective Mach number is 0.8. The results show that KDO model has good control and simulation ability of mixing flow velocity distribution; compared with the original model and other compressible correction models, the velocity distribution, primary Reynolds shear stress and mixing layer thickness obtained with compressible correction model CKDO have a better fit with the experimental value. The results illustrate that the new mixing length has a good ability of characterization for compressible free shear turbulent mixing layer.
[1] BIRCH S F, EGGERS J M. A critical review of the experimental data for developed free turbulent shear layers:NASA SP-321[R]. Washington, D.C.:NASA, 1972.
[2] GRUBER M R, MESSERSMITH N L, DUTTON J C. Three-dimensional velocity field in a compressible mixing layer[J]. AIAA Journal, 1993, 31(11):2061-2067.
[3] WILCOX D C. Progress in hypersonic turbulence modeling:AIAA-1991-1785[R]. Reston:AIAA, 1991.
[4] WILCOX D C. A complete model of turbulence revisited:AIAA-1984-0176[R]. Reston:AIAA, 1984.
[5] WILCOX D C. Dilatation-dissipation corrections for advanced turbulence models[J]. AIAA Journal, 1992, 30(11):2639-2646.
[6] WILCOX D C. Turbulence modeling for CFD[M]. California:DCW Industries, Inc., 1998:180-183.
[7] MENTER F R. Improved two-equation k-omega turbulence models for aerodynamic flows:NASA TM-1992-103975[R]. Washington, D. C.:NASA, 1992.
[8] SARKAR S, ERLEBACHER G, HUSSAINI M Y, et al. The analysis and modeling of dilatational terms in compressible turbulence[J]. Journal of Fluid Mechanics, 1991, 227(3):473-493.
[9] XU J L, ZHANG Y, BAI J Q. One-equation turbulence model based on extended Bradshaw assumption[J]. AIAA Journal, 2015, 53(6):1433-1441.
[10] 白俊强, 张扬, 徐晶磊, 等. 新型单方程湍流模型构造及其应用[J]. 航空学报, 2014, 35(7):1804-1814. BAI J Q, ZHANG Y, XU J L, et al. Construction and application of a new one-equation turbulence model[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7):1804-1814(in Chinese).
[11] 徐晶磊, 张扬, 白俊强, 等. 一个方程驱动转捩的湍动能单方程模型[C]//中国力学大会文集. 北京:中国力学学会发, 2013:142-149. XU J L, ZHANG Y, BAI J Q, et al. A transition model based only on turbulence kinetic equation[C]//The Chinese Society of Theoretical and Applied Mechanics. Beijing:Chinese Society of Theoretical and Applied Mechanics, 2013:142-149(in Chinese).
[12] 张扬, 徐晶磊, 白俊强, 等. 一种基于湍动能方程的转捩判定方法[J]. 力学学报, 2014, 46(1):160-164. ZHANG Y, XU J L, BAI J Q, et al. A transition prediction method based on turbulence kinetic equation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1):160-164(in Chinese).
[13] BRADSHAW P, FERRISS D, ATWELL N. Calculation of boundary layer development using the turbulent energy equation[J]. Journal of Fluid Mechanics, 1967, 28(3):593-616.
[14] HARSHA P T, LEE S C. Correlation between turbulent shear stress and turbulent kinetic energy[J]. AIAA Journal, 1970, 8(8):1508-1510.
[15] 文晓庆, 柳阳威, 方乐, 等. 提高k-ω SST模型对翼型失速特性的模拟能力[J]. 北京航空航天大学学报, 2013, 31(8):1127-1132. WEN X Q, LIU Y W, FANG L, et al. Improving the capability of k-ω SST turubulence model for predicting stall characteristics of airfoil[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 31(8):1127-1132(in Chinese).
[16] 刘景源. SST湍流模型在高超声速绕流中的改进[J]. 航空学报, 2012, 33(12):2192-2201. LIU J Y. An improved SST turbulence model for hypersonic flows[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(12):2192-2201(in Chinese).
[17] 徐晶磊, 阎超. 一个一方程Scale-Adaptive Simulation模型的构造[J]. 气体物理, 2010, 5(1):79-82. XU J L, YAN C. A one-equation scale-adaptive simulation model[J]. Physics of Gases, 2010, 5(1):79-82(in Chinese).
[18] WILCOX D C. Turbulence modeling for CFD[M]. California:DCW Industries, Inc., 2006:243-261.
[19] GRUBER M R, MESSERSMITH N L, DUTTON J C. Three-dimensional velocity measurements in a turbulent compressible mixing layer[C]//28th Joint Propulsion Conference and Exhibit. Nashville:AIAA, SAE, ASME, and ASEE, 1992.
[20] GOEBEL S G, DUTTON J C, KRIER H, et al. Mean and turbulent velocity measurements of supersonic mixing layers[J]. Experiments in Fluids, 1990, 8(5):263-272.
[21] POPE S B. Turbulent flows[M]. Cambridge:Cambridge University Press, 2000:116-118.
[22] SETTLES G S, DODSON L J. Hypersonic turbulent boundary-layer and free shear database:NASA CR-1993-177610[R]. Washington, D.C.:NASA, 1993.
/
〈 | 〉 |