材料工程与机械制造

轴承腔油滴沉积特性及油膜流动特征分析

  • 王莉娜 ,
  • 陈国定 ,
  • 孙恒超
展开
  • 西北工业大学 机电学院, 西安 710072
王莉娜 女,博士研究生。主要研究方向:航空发动机密封与润滑。E-mail:wangxiweigood@163.com;陈国定 男,博士,教授,博士生导师。主要研究方向:润滑与密封、机电系统热分析和现代机械设计理论与方法。Tel.:029-88493929 E-mail:gdchen@nwpu.edu.cn;孙恒超 男,博士研究生。主要研究方向:航空发动机润滑系统设计。E-mail:shc361@163.com

收稿日期: 2015-09-30

  修回日期: 2015-10-20

  网络出版日期: 2015-11-26

基金资助

国家自然科学基金(51275411)

Characteristics analysis of oil droplet deposition and oil film flow in a bearing chamber

  • WANG Li'na ,
  • CHEN Guoding ,
  • SUN Hengchao
Expand
  • School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2015-09-30

  Revised date: 2015-10-20

  Online published: 2015-11-26

Supported by

National Natural Science Foundation of China (51275411)

摘要

轴承腔的润滑和换热设计依赖于对腔内油气两相流动和换热状态的准确理解。针对先前研究工作的不足,在包含油滴碰撞腔壁热量交换、沉积热量以及油膜温度即考虑温度效应的条件下,开展了油滴沉积特性及油膜流动特征分析。首先分析了单个油滴碰撞腔壁沉积特性,确定了油滴的沉积质量、动量和热量。其次在考虑油滴尺寸分布的条件下,通过离散油滴尺寸范围的方式确定了腔内所有油滴碰撞腔壁的沉积油膜质量、动量和热量。最后借助力学平衡和质量守恒条件,以上述参数为基础计算了腔壁油膜温度以及速度和厚度的分布情况。计算结果表明,随着转子转速的增加,油滴的质量、动量和热量沉积率有所降低,一次沉积油膜质量、沉积油膜动量、沉积油膜热量以及油膜速度均有所增加,而油膜厚度降低。通过与试验数据的对比表明,提出的轴承腔油滴沉积特性及油膜流动特征分析方法是较为可靠的,并且考虑温度效应使油膜厚度的计算更为准确。分析工作为轴承腔的润滑和换热设计提供了一定的参考依据。

本文引用格式

王莉娜 , 陈国定 , 孙恒超 . 轴承腔油滴沉积特性及油膜流动特征分析[J]. 航空学报, 2016 , 37(10) : 3159 -3169 . DOI: 10.7527/S1000-6893.2015.0302

Abstract

The lubrication and heat transfer designs of an aero engine bearing chamber depend on the understanding about the states of oil/air two-phase flow and heat transfer in chamber. To overcome the weakness of previous study, we investigates into the characteristics of oil droplet deposition and oil film flow in a bearing chamber considering the heat transfer of oil droplet/housing interaction, deposition heat and oil film temperature, namely, the effect of temperature. Firstly, the deposition characteristics of a single oil droplet are analyzed, and the deposition mass, momentum and heat are obtained. Secondly, with the oil droplet size distribution, the deposition oil film mass, momentum and heat of all the droplets impacting on housing are obtained by dispersing the diameter range of the droplets. Finally, with the above parameters, the oil film temperature, average velocity and thickness are calculated by means of force balance and mass conservation conditions. The results show that with an increasing shaft speed, the oil droplet deposition rates of mass, momentum and heat decrease, and the first deposition oil film mass, deposition oil film momentum, deposition oil film heat and oil film velocity increase, while oil film thickness decreases. The comparison of oil film thickness between theoretical data and experimental data shows that the proposed theoretical model is reliable and the consideration of temperature effect improves the calculation accuracy about oil film thickness. The present work provides some references for the design of bearing chamber.

参考文献

[1] WITTIG S, GLAHN A, HIMMELSBACH J. Influence of high rotational speeds on heat transfer and oil film thickness in aero-engine bearing chambers[J]. Journal of Engineering for Gas Turbines and Power, 1994, 116(2):395-401.
[2] FARRALL M, HIBBERD S, SIMMONS K. Modelling oil droplet/film interaction in an aero-engine bearing chamber[C]//9th International Conference on Liquid Atomization and Spray Systems. Sorrento:Institute for Liquid Atomization and Spray System, 2003:1-8.
[3] FARRALL M, SIMMONS K, HIBBERD S, et al. A numerical model for oil film flow in an aeroengine bearing chamber and comparison to experimental data[J]. Journal of Engineering for Gas Turbines and Power, 2006, 128(1):111-117.
[4] FARRALL M, HIBBERD S, SIMMONS K. The effect of initial injection conditions on the oil droplet motion in a simplified bearing chamber[J]. Journal of Engineering for Gas Turbines and Power, 2008, 130(1):1-7.
[5] 刘登, 陈国定, 方龙, 等. 运动油滴/固体壁面斜碰撞的状态辨识及特征分析[J]. 航空学报, 2015, 36(4):1359-1366. LIU D, CHEN G D, FANG L, et al. State identification and characteristics analysis of oil droplet's oblique impact onto solid wall[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4):1359-1366(in Chinese).
[6] 陈国定, 陈薄, 王军, 等. 轴承腔中油滴尺寸分布和沉积特性[J]. 机械工程学报, 2011, 47(10):139-144. CHEN G D, CHEN B, WANG J, et al. Oil droplet size distribution and deposition properties in bearing chamber[J]. Journal of Mechanical Engineering, 2011, 47(10):139-144(in Chinese).
[7] 刘亚军, 陈国定, 王军. 高转速下轴承腔内壁油膜流动建模[J]. 航空动力学报, 2010, 25(8):1900-1905. LIU Y J, CHEN G D, WANG J. Flow modeling of oil film on bearing chamber wall at high-speed[J]. Journal of Aerospace Power, 2010, 25(8):1900-1905(in Chinese).
[8] CHEN G D, SUN H C, WANG J. Research into configuration and flow of wall oil film in bearing chamber based on droplet size distribution[J]. Chinese Journal of Aeronautics, 2011, 24(3):355-362.
[9] GLAHN A, WITTIG S. Two-phase air/oil flow in aero engine bearing chambers:Characterization of oil film flows[J]. Journal of Engineering for Gas Turbines and Power, 1996, 118(3):578-583.
[10] GLAHN A, WITTIG S. Two-phase air/oil flow in aero-engine bearing chambers-assessment of an analytical prediction method for the internal wall heat transfer[J]. International Journal of Rotating Machinery, 1999, 5(3):155-165.
[11] 赵静宇, 刘振侠, 胡剑平, 等. 轴承腔内壁油膜运动特性的数值研究[J]. 推进技术, 2013, 35(1):25-32. ZHAO J Y, LIU Z X, HU J P, et al. Numerical study on motion characteristics of lubricating oil film of bearing chamber wall[J]. Journal of Propulsion Technology, 2013, 35(1):25-32(in Chinese).
[12] 胡剑平, 刘振侠, 吕亚国, 等. 轴承腔壁面液膜厚度数值模拟与实验测量[J]. 航空计算技术, 2013, 43(2):68-71. HU J P, LIU Z X, LU Y G, et al. Comparison of simulation and measurement for film thickness in bearing chamber[J]. Aeronautical Computing Technique, 2013, 43(2):68-71(in Chinese).
[13] 孙恒超, 陈国定, 王莉娜, 等. 轴承腔油滴含率及油滴相与空气能量传递分析[J]. 航空学报, 2016, 37(3):1074-1087. SUN H C, CHEN G D, WANG L N, et al. Oil droplets fractions and oil droplets/air energy transfer in bearing chamber[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3):1074-1087(in Chinese).
[14] SUN H C, CHEN G D, ZHANG Y H, et al. Theoretical and experimental study on the motion and thermal states of oil droplet in a bearing chamber[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering (in press).
[15] MUNDO C, SOMMERFELD M, TROPEA C. Droplet-wall collisions:Experimental studies of the deformation and breakup process[J]. International Journal of Multiphase Flow, 1995, 21(2):151-173.
[16] MUNDO C, TROPEA C, SOMMERFELD M. Numerical and experimental investigation of spray characteristics in the vicinity of a rigid wall[J]. Experimental Thermal and Fluid Science, 1997, 15(3):228-237.
[17] PASANDIDEH F M, AZIZ S D, CHANDRA S, et al. Cooling effectiveness of a water drop impinging on a hot surface[J]. International Journal of Heat and Fluid Flow, 2001, 22(2):201-210.
[18] 王军. 航空发动机轴承腔油滴运动及油膜形成研究[D]. 西安:西北工业大学, 2010:58-59. WANG J. Study of oil droplet motion and the form of oil film in an aeroengine bearing chamber[D]. Xi'an:Northwestern Polytechnical University, 2010:58-59(in Chinese).
[19] 林基恕. 航空发动机设计手册第12册传动及润滑系统[M]. 北京:航空工业出版社, 2002:456-457. LIN J S. Design handbook of aero engine, volume 12, transmission and lubrication systems[M]. Beijing:Aviation Industrial Press, 2002:456-457(in Chinese).
[20] GORSE P, BUSAM S, DULLENKOPF K. Influence of operating condition and geometry on the oil film thickness in aeroengine bearing chambers[J]. Journal of Engineering for Gas Turbines and Power, 2006, 128(1):103-110.

文章导航

/