发展综述与需求论证

民用飞机气动布局发展演变及其技术影响因素

  • 张帅 ,
  • 夏明 ,
  • 钟伯文
展开
  • 1. 中国商飞北京民用飞机技术研究中心总体论证研究部, 北京 102211;
    2. 南京航空航天大学航空宇航学院, 南京 210016
张帅 男,博士。主要研究方向:飞机总体设计,多学科设计优化。Tel:010-57808171,E-mail:zhangshuai@nuaa.edu.cn;夏明 男,博士,工程师。主要研究方向:飞机总体设计,计算空气动力学。Tel:010-57808804,E-mail:xiaming@comac.cc;钟伯文 男,博士,研究员。主要研究方向:飞机总体设计,计算空气动力学。Tel:010-57808802,E-mail:zhongbowen@comac.cc

收稿日期: 2015-10-20

  修回日期: 2015-11-17

  网络出版日期: 2015-11-26

Evolution and technical factors influencing civil aircraft aerodynamic configuration

  • ZHANG Shuai ,
  • XIA Ming ,
  • ZHONG Bowen
Expand
  • 1. Department of Aircraft Configuration Studies, Beijing Aeronautical Science & Technology Research Institute of COMAC, Beijing 102211, China;
    2. College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2015-10-20

  Revised date: 2015-11-17

  Online published: 2015-11-26

摘要

在民用飞机气动布局发展演变的历程中,技术因素是根本推动力。为了研究未来民机的发展方向、技术需求以及应对策略,在回顾民机气动布局发展历程的基础上,梳理了在现代民机气动布局形成与演变过程中有着重要影响的4大类技术因素:航空发动机、气动设计、结构设计、飞行控制,并且揭示了这些技术因素在民机发展及其气动布局演变中所发挥的作用。结合未来航空运输市场出现的新需求,分析了未来民机的主要发展方向,重点分析了未来非常规布局民机可能采用的翼身融合、双气泡机身、支撑翼以及联结翼等气动布局形式。最后探讨了新技术条件下民用飞机发展在技术方面的需求和挑战,以及未来民用飞机总体设计的技术策略,明确了多学科设计优化是满足未来民机总体设计需求的有效技术途径。

本文引用格式

张帅 , 夏明 , 钟伯文 . 民用飞机气动布局发展演变及其技术影响因素[J]. 航空学报, 2016 , 37(1) : 30 -44 . DOI: 10.7527/S1000-6893.2015.0311

Abstract

Technology is a basic impetus on the development and evolution of the civil aircraft aerodynamic configuration.In order to study the development directions,technical requirements and strategies for the future civil aircraft,this paper reviews the development of civil aircraft aerodynamic configuration and then summarizes four technical factors,i.e.,aeroengine,aerodynamic design,structural design and flight control,which have important influence on the formation and evolution of the modern civil aircraft aerodynamic configuration.The role of these technical factors in the development of the civil aircraft aerodynamic configuration has also been revealed.Considering the new requirements for the future air transportation,this paper points out the main developing directions of the future civil aircraft,and emphatically analyzes the aerodynamic configurations such as blended wing-body,double bubble body,braced-wing and joined-wing,which might be used in the future unconventional civil aircraft.Furthermore,the challenge in technology development,as well as the technology strategies for the future civil aircraft conceptual design,has been discussed.Finally,the paper clarifies that the multidisciplinary design optimization is an effective method for the future civil aircraft conceptual design.

参考文献

[1] WHITFORD R.Evolution of the airliner[M].Marlborough:The Crowood Press Ltd,2007.
[2] ANANTHASAYANAM M R.Pattern of progress of civil transport airplanes during the twentieth century:AIAA-2003-5621[R].Reston:AIAA,2003.
[3] DAVIES R E G.The world's first commercial jets:AIAA-2003-2882[R].Reston:AIAA,2003.
[4] JENKINSON L R,SIMPKIN P,RHODES D.Civil jet aircraft design[M].London:Arnold,1999.
[5] ATWOOD J L.Fifty years of technical progress in aviation and a look ahead:AIAA-1976-0893[R].Reston:AIAA,1976.
[6] OLESON M K.Douglas transport aircraft:AIAA-1978-3007[R].Reston:AIAA,1978.
[7] REDDY D R.70 years of aeropropulsion research at NASA Glenn research center:NASA/TP-2013-216524[R].Cleveland:NASA Glenn Research Center,2013.
[8] HOFF N J.Innovation in aircraft structures-fifty years ago and today:AIAA-1984-0840[R].Reston:AIAA,1984.
[9] SCHAUFELE R D.Applied aerodynamics at the Douglas aircraft company-a historical perspective:AIAA-1999-0118[R].Reston:AIAA,1999.
[10] FRANCILLON R J.McDonnell Douglas Aircraft since 1920:Volume I[M].Annapolis:Naval Institute Press,1988.
[11] 罗安阳,周辉华,申余兵.航空涡轮螺旋桨发动机发展现状与展望[J].航空科学技术,2013(5):1-5.LUO A Y,ZHOU H H,SHEN Y B.Recent advances and prospective of turboprop engines[J].Aeronautical Science & technology,2013(5):1-5(in Chinese).
[12] WIKIPEDIA.de Havilland Comet[EB/OL].(2015-07-10)[2015-09-04].https://en.wikipedia.org/wiki/De_Havilland_Comet.
[13] ATKINSON R J,WINKWORTH W J,NORRIS G M.Behaviour of skin fatigue cracks at the corners of windows in a Comet I fuselage:R & M No.3248[R].London:Ministry of Aviation via Her Majesty's Stationery Office,1962.
[14] WITHEY P A.Fatigue failure of the de Havilland Comet I[J].Engineering Failure Analysis,1997,4(2):147-154.
[15] VAN DER LINDEN F R.Government,business,and technology:U.S.airliner development,1927-2012[J].World Neurosurgery,2012,78(3-4):206-213.
[16] BOEING COMMERCIAL AIRPLANES.737 Airplane characteristics for airport planning:Boeing D6-58325-6[R].Seattle:Boeing Commercial Airplanes,2005.
[17] SKINN D,TIPPS D O,RUSTENBURG J.Statistical loads data for MD-82/83 aircraft in commercial operations:DOT/FAA/AR-98/65[R].Washington,D.C.:Office of Aviation Research,FAA,1999.
[18] 辛文.同室操戈相煎急——三发宽体客机失败启示录[J].大飞机,2015(3):82-84.XIN W.Fierce competition for the wide-body airliner——The revelation of the commercial flop of 3-engines wide-body airliners[J].Airliner,2015(3):82-84(in Chinese).
[19] WIKIPEDIA.Airbus A330 [EB/OL].(2015-08-20)[2015-09-04].https://en.wikipedia.org/wiki/Airbus_A330.
[20] WIKIPEDIA.McDonnell Douglas DC-10 [EB/OL].(2015-09-02)[2015-09-04].https://en.wikipedia.org/wiki/McDonnell_Douglas_DC-10.
[21] KOFF B L,GARDENS P B.Gas turbine technology evolution-a designer's perspective:AIAA-2003-2722[R].Reston:AIAA,2003.
[22] HUGHES C E.Aircraft engine technology for green aviation to reduce fuel burn:AIAA-2011-3531[R].Reston:AIAA,2011.
[23] 陈光.用于波音787客机的GEnx发动机设计特点[J].航空发动机,2010,36(1):1-5.CHEN G.Design characteristics of GEnx engine for B787[J].Aeroengine,2010,36(1):1-5(in Chinese).
[24] 成磊.聚焦GEnx发动机[J].航空维修与工程,2012(3):22.CHENG L.Focus on GEnx[J].Aviation Maintenance & Engineering,2012(3):22(in Chinese).
[25] 陈光.PW1000G齿轮传动风扇发动机设计特点[J].国际航空,2009(12):71-74.CHEN G.Design features of PW1000G GTF engine[J].International Aviation,2009(12):71-74(in Chinese).
[26] 胡晓煜.下一代窄体客机发动机最新进展[J].航空发动机,2010,36(1):52-56.HU X Y.Latest development of next generation narrow aircraft engine[J].Aeroengine,2010,36(1):52-56(in Chinese).
[27] GOHARDANI A S,DOULGERIS G,SINGH R.Challenges of future aircraft propulsion:A review of distributed propulsion technology and its potential application for the all electric commercial aircraft[J].Progress in Aerospace Sciences,2011,47(5):369-391.
[28] JOHNSON F T,TINOCO E N,YU N J.Thirty years of development and application of CFD at Boeing Commercial Airplanes,Seattle[J].Computers & Fluids,2005,34(10):1115-1151.
[29] WIKIPEDIA.Richard_T._Whitcomb[EB/OL].(2015-06-09)[2015-09-04].https://en.wikipedia.org/wiki/Richard_T._Whitcomb.
[30] SURHONE L M,TENNOE M T,HENSSONOW S F.Richard T.Whitcomb[M].Beau-Bassin(Mauritius):Betascript Publishing,2010.
[31] JAMESON A,OU K.50 years of transonic aircraft design[J].Progress in Aerospace Sciences,2011,47(5):308-318.
[32] JAMESON A.The "flo" codes[EB/OL].(2014-12-30)[2015-09-04].http://aero-comlab.stanford.edu/jameson/flo_codes.html.
[33] SLOTNICK J,KHODADOUST A,ALONSO J,et al.CFD vision 2030 study:A path to revolutionary computational aerosciences[R].Hampton:NASA Langley Research Center,2013.
[34] 刘东岳,万志强,杨超,等.大展弦比机翼总体刚度的气动弹性优化设计[J].航空学报,2011,32(6):1025-1031.LIU D Y,WAN Z Q,YANG C,et al.Aeroelastic optimization design of global stiffness for high aspect ratio wing[J].Acta Aeronautica et Astronautica Sinica,2011,32(6):1025-1031(in Chinese).
[35] NIU M C Y.Airframe structural design[M].Hong Kong:Conmilit Press Ltd,1995:21-65.
[36] HOOKE F H.A new look at structural reliability and risk theory[J].AIAA Journal,1970,17(9):980-987.
[37] PEREZ R E,LIU H T,BEHDINAN K.Relaxed static stability aircraft design via longitudinal control-configured multi-disciplinary design optimization methodology[J].Canadian Aeronautics and Space Journal,2006,52(1):1-14.
[38] 张帅.客机总体综合分析与优化及其在技术评估中的应用[D].南京:南京航空航天大学,2012.ZHANG S.Integrated analysis and optimization in conceptual design of airliners with applications to technology assessment[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2012(in Chinese).
[39] BLESSING B,DIXON J,MACKEY A,et al.VERDE-response to the 2008-2009 AIAA undergraduate team aircraft design competition[R].San Luis Obispo:Kermit Design Team,CPSU,2009.
[40] QIN N,WONG W S,LEMOIGNE A.Three-dimensional contour bumps for transonic wing drag reduction[J].Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2008,222(5):619-629.
[41] 余雄庆,欧阳星,王宇,等.用适用性理念指导短程客机概念设计[J].南京航空航天大学学报,2014,46(3):349-354.YU X Q,OUYANG X,WANG Y,et al.Adaptability inspired conceptual design of short-haul civil jets[J].Journal of Nanjing University of Aeronautics & Astronautics,2014,46(3):349-354(in Chinese).
[42] CHAKRABORTY I,OZCAN M F,MAVRIS D N.Effect of major subsystem power off-takes on aircraft performance in more electric aircraft architectures:AIAA-2015-3287[R].Reston:AIAA,2015.
[43] BROWN N.Next generation transport concepts and enabling technology research at NASA:NASA-20140011013[R].Edwards:NASA Dryden Flight Research Center,2014.
[44] GREITZER E M,BONNEFOY P A,DE LA BLANCO E,et al.N+3 aircraft concept designs and trade studies:NASA CR-216794[R].Cleveland:NASA Glenn Research Center,2010.
[45] 朱自强,王晓璐,吴宗成,等.民机的一种新型布局形式——翼身融合体飞机 [J].航空学报,2008,29(1):49-59.ZHU Z Q,WANG X L,WU Z C,et al.A new type of transport blended wing body aircraft[J].Acta Aeronautica et Astronautica Sinica,2008,29(1):49-59(in Chinese).
[46] NAM T,CHAKRABORTY I,GROSS J,et al.Multidisciplinary design optimization of a truss-braced wing concept:AIAA-2014-2423[R].Reston:AIAA,2014.
[47] 朱自强,王晓璐,吴宗成,等.支撑机翼跨声速民机的多学科优化设计[J].航空学报,2009,30(1):1-11.ZHU Z Q,WANG X L,WU Z C,et al.Multi-disciplinary optimization of strut-braced wing transonic transport[J].Acta Aeronautica et Astronautica Sinica,2009,30(1):1-11(in Chinese).
[48] MANGELSDORF M.Environmentally responsible aviation N+2 advanced vehicle concepts NRA status:NASA-20110015351[R].Edwards:NASA Dryden Flight Research Center,2011.
[49] GALLMAN J W,SMITH S C,KROO I M.Optimization of joined-wing aircraft[J].Journal of Aircraft,1993,30(6):897-905.
[50] PAUR J.The turbine-powered Chevy Volt of airliners looks fantastic[EB/OL].(2013-07-03)[2015-09-04].http://www.wired.com/2013/07/eads-ethrust-hybrid-airliner.
[51] FELDER J L,KIM H D,BROWN G V.Turboelectric distributed propulsion engine cycle analysis for hybrid-wing-body aircraft:AIAA-2009-1132[R].Reston:AIAA,2009.
[52] WIKIPEDIA.Concorde [EB/OL].(2015-07-10)[2015-09-04].https://en.wikipedia.org/wiki/Concorde.
[53] CHIMA R V,CONNERS T R,WAYMAN T R.Coupled analysis of an inlet and fan for a quiet supersonic jet:AIAA-2010-0479[R].Reston:AIAA,2010.
[54] SUTTER J,ROFF R,DEES P.The Boeing 747 jumbo jet:AIAA-2003-2883[R].Reston:AIAA,2003.
[55] WELGE H R,BONET J,MAGEE T,et al.N+2 supersonic concept development and systems integration:NASA CR-2010-216842[R].Hampton:NASA Langley Research Center,2010.
[56] MORGENSTERN J,NORSTRUD N,SOKHEY J,et al.Advanced concept studies for supersonic commercial transports entering service in the 2018 to 2020 period(phase I final report):NASA CR-2013-217820[R].Cleveland:NASA Glenn Research Center,2013.
[57] RAYMER D P,WILSON J,PERKINS H D,et al.Advanced technology subsonic transport study:N+3 Technologies and Design Concepts:NASA TM-2011-217130[R].Cleveland:NASA Glenn Research Center,2011.
[58] BRUNER M,LAFAGE R,AUBRY S.The clean sky technology evaluator information system:AIAA-2013-4316[R].Reston:AIAA,2013.
[59] HALLER W,GUYNN M.Technical challenges to systems analysis and MDAO for advanced subsonic transport aircraft:NASA-20150010336[R].Cleveland:NASA GlennResearch Center,2015.
[60] WERNER-WESTPHAL C,HEINZE W,HORST P.Multidisciplinary integrated preliminary design applied to future green aircraft configurations:AIAA-2007-0655[R].Reston:AIAA,2007.
[61] KHRABROV A,SIDORYUK M.Non-symmetrical general aviation aircraft and its flight control law design using CEASIOM software:AIAA-2010-0284[R].Reston:AIAA,2010.
[62] ISIKVEREN A T.Quasi-analytical modelling and optimisation techniques for transport aircraft design[D].Stockholm:Royal Institute of Technology(KTH),2002.
[63] FENG H C,LUO M Q,LIU H,et al.A knowledge-based and extensible aircraft conceptual design environment[J].Chinese Journal of Aeronautics,2011,24(6),709-719.
[64] 朱自强,王晓璐,吴宗成,等.民机设计中的多学科优化和数值模拟[J].航空学报,2007,28(1):1-13.ZHU Z Q,WANG X L,WU Z C,et al.Multi-disciplinary optimization and numerical simulation in civil aircraft design[J].Acta Aeronautica et Astronautica Sinica,2007,28(1):1-13(in Chinese).
[65] 余雄庆,丁运亮.多学科设计优化算法及其在飞行器设计中应用[J].航空学报,2000,21(1):1-6.YU X Q,DING Y L.Multidisciplinary design optimization:A survey of its algorithms and applications to aircraft design [J].Acta Aeronautica et Astronautica Sinica,2000,21(1):1-6(in Chinese).
[66] DE WECK O,AGTE J,SOBIESZCZANSKI-SOBIESKI J,et al.State-of-the-art and future trends in multidisciplinary design optimization:AIAA-2007-1905[R].Reston:AIAA,2007.
[67] 余雄庆.飞机总体多学科设计优化的现状与发展方向[J].南京航空航天大学学报,2008,40(4):417-426.YU X Q.Multidisciplinary design optimization for aircraft conceptual and preliminary design:status and directions[J].Journal of Nanjing University of Aeronautics & Astronautics,2008,40(4):417-426(in Chinese).
[68] VAN DER VELDEN A,KELM R,KOKAN D,et al.Application of MDO to large subsonic transport aircraft:AIAA-2000-0844[R].Reston:AIAA,2000.
[69] PADULA S L,GILLIAN R E.Multidisciplinary environment:A history of engineering framework development:AIAA-2006-7083[R].Reston:AIAA,2006.
[70] 吴光辉,刘虎.大型客机数字化设计支持体系框架[J].航空学报,2008,29(5):1386-1394.WU G H,LIU H.Framework of digital design support system-of-systems for large airliners [J].Acta Aeronautica et Astronautica Sinica,2008,29(5):1386-1394(in Chinese).
[71] 马铁林,马东立.大系统理论体系下的飞行器多学科设计优化方法[J].航空学报,2009,29(9):186-192.MA T L,MA D L.Multidisciplinary design optimization methods for aircrafts under large-scale system theory[J].Acta Aeronautica et Astronautica Sinica,2009,29(9):186-192(in Chinese).ility & control – the SimSAC project. AIAA-2010-8238, 2010.
[59] Khrabrov A, Sidoryuk M. Non-symmetrical general aviation aircraft and its flight control law design using CEASIOM software. AIAA-2010-284, 2010.
[60] Isikveren A, Melin T. QCARD – A modelling and opti-misation tool for transport aircraft design. Linkoping (Sweden): 5th European Workshop on Aircraft Design Education, 2002.
[61] Feng H, Luo M, Liu H, et al. A knowledge-based and extensible aircraft conceptual design environment. Chi-nese Journal of Aeronautics, 2011, 24(6), 209-719.
[62] Zhu Z, Wang X, Wu Z, et al. Multi-disciplinary optimi-zation and numerical simulation in civil aircraft design. Acta Aeronoutica et Astronautica Sinica, 2007, 28(1): 1-13. (in Chinese)
朱自强, 王晓璐, 吴宗成, 等. 民机设计中的多学科优化和数值模拟. 航空学报, 2007, 28(1): 1-13.
[63] Yu X Q, Ding Y L. Multidisciplinary design optimiza-tion: a survey of its algorithms and applications to aircraft design. Acta Aeronoutica et Astronautica Sinica, 2000, 21(1): 1-6. (in Chinese)
余雄庆, 丁运亮. 多学科设计优化算法及其在飞行器设计中应用. 航空学报, 2000, 21(1): 1-6.
[64] de Weck O, Agte J, Sobieszczanski-Sobieski J. State-of –the-art and future trends in multidisciplinary design optimization. AIAA-2007-1905.
[65] Yu X Q. Multidisciplinary design optimization for air-craft conceptual and preliminary design: status and di-rections. Journal of Nanjing University of Aeronautics & Astronautics, 2008, 40(4): 417-426. (in Chinese)
余雄庆. 飞机总体多学科设计优化的现状与发展方向. 南京航空航天大学学报, 2008, 40(4): 417-426.
[66] Van der Velden A, Kelm R, Kokan D, et al. Application of MDO to large subsonic transport aircraft. AIAA-2000-0844.
[67] Wu G, Liu H. Framework of digital design support sys-tem-of-systems for large airliners. Acta Aeronoutica et Astronautica Sinica, 2008, 29(5): 1386-1394. (in Chi-nese)
吴光辉, 刘虎. 大型客机数字化设计支持体系框架. 航空学报, 2008, 29(5): 1386-1394.
[68] Ma T, Ma D. Multidisciplinary design optimization methods for aircrafts under large-scale system theory. Acta Aeronoutica et Astronautica Sinica, 2009, 29(9): 186-192. (in Chinese)
马铁林, 马东立. 大系统理论体系下的飞行器多学科设计优化方法. 航空学报, 2009, 29(9): 186-192.

文章导航

/