材料工程与机械制造

面向飞机大部件调姿的PPPS机构球铰点中心位置闭环标定方法

  • 雷沛 ,
  • 郑联语
展开
  • 北京航空航天大学 机械工程及自动化学院, 北京 100083
雷沛 男,博士研究生。主要研究方向:大构件闭环制造、数字化制造。E-mail:leipei@buaa.edu.cn;郑联语 男,博士,教授,博士生导师。主要研究方向:CAD/CAM、智能制造。Tel.:010-82317725 E-mail:lyzheng@buaa.edu.cn

收稿日期: 2015-10-12

  修回日期: 2015-11-09

  网络出版日期: 2015-11-25

基金资助

国家自然科学基金(51175026);航空高端装备智能制造技术工信部重点实验室项目;数字化设计与制造北京市重点实验室项目

Closed-loop calibration method of PPPS mechanism ball joint center position for posture adjustment of large aircraft components

  • LEI Pei ,
  • ZHENG Lianyu
Expand
  • School of Mechanical Engineering and Automation, Beihang University, Beijing 100083, China

Received date: 2015-10-12

  Revised date: 2015-11-09

  Online published: 2015-11-25

Supported by

National Natural Science Foundation of China (51175026); MIIT Key Laboratory of Aeronautics Smart Manufacturing Technology; Beijing Key Laboratory of Digital Design and Manufacturing

摘要

PPPS机构球铰点中心位置对飞机大部件调姿精度有重要影响,为了解决当前常用的球铰点中心位置获取方式在精度或效率上的不足,提出一种PPPS调姿机构球铰点中心位置的闭环标定方法。首先,分析了球铰点中心位置误差与运动学逆解时定位器位移求解偏差的关系及大部件位姿变换参数对其的影响;然后,提出了基于关键特性结合奇异值分解几何意义的飞机大部件位姿参数快速求解方法,使位姿参数求解过程更加直观简捷,同时相较于常用的奇异值分解方法在精度上没有损失;利用一次调姿过程前后大部件位姿参数的变化和定位器的位移反馈,结合运动学逆解对球铰点中心的位置进行闭环标定,最后,以某型号飞机垂尾测试件为例验证了所提出方法的正确性和实用性。

本文引用格式

雷沛 , 郑联语 . 面向飞机大部件调姿的PPPS机构球铰点中心位置闭环标定方法[J]. 航空学报, 2016 , 37(10) : 3186 -3196 . DOI: 10.7527/S1000-6893.2015.0304

Abstract

Precision of ball joint center position in PPPS mechanism has a significant impact on the posture aligning accuracy of large aircraft components. The common method to get the position of ball joint center is poor at precision and efficiency. To overcome the shortage of current means, a closed-loop calibration method is proposed. The position error of ball joint center brings deviation to positioner displacement in backward transformation and the orientation transformation parameters also have an effect on the deviation. The relationship between positioner displacement error and its influencing factors is analyzed firstly to show the necessity of this paper. A new calculation algorithm of posture transformation parameters, which is simpler and more direct than traditional singular value decomposition (SVD) method, is presented based on the key characteristics (KC) and the geometric meaning of SVD method. Then the posture transformation parameters are computed before and after the aligning of large components by the use of the proposed algorithm. The calculated parameters and the positioner displacement feedback from numerical control system are utilized to calibrate the position of ball joint center. Finally, a test vertical tail of a certain aircraft is used to demonstrate the validity and practicability of the proposed methods.

参考文献

[1] 熊瑞斌, 黄浦缙, 柯映林. 一种适用于飞机装配的新型随动定位器[J]. 航空学报, 2009, 30(12):2469-2475. XIONG R B, HUANG P J, KE Y L. A new posture following and keeping fixture for aircraft assembly[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(12):2469-2475(in Chinese).
[2] 郭志敏, 蒋君侠, 柯映林. 基于POGO柱三点支撑的飞机大部件调姿方法[J]. 航空学报, 2009, 30(7):1319-1324. GUO Z M, JIANG J X, KE Y L. Posture alignment for large aircraft parts based on three POGO sticks distributed support[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(7):1319-1324(in Chinese).
[3] WILLIANMS G, CHALUPA E, RAHHAL S. Automated positioning and alignment systems[J]. SAE Transactions, 2000, 109(11):737-745.
[4] 邱宝贵, 蒋君侠, 毕运波, 等. 大型飞机机身调姿与对接试验系统[J]. 航空学报, 2011, 32(5):908-919. QIU B G, JIANG J X, BI Y B, et al. Posture alignment and joining test system for large aircraft fuselages[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5):908-919(in Chinese).
[5] 许国康. 大型飞机自动化装配技术[J]. 航空学报, 2008, 29(3):734-740. XU G K. Automatic assembly technology for large aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3):734-740(in Chinese).
[6] 刘楚辉, 李江雄, 董辉跃, 等. 飞机机身-机翼接头精加工条件评价技术[J]. 航空学报, 2010, 31(6):1272-1279. LIU C H, LI J X, DONG H Y, et al. Finish machining condition evaluation technology for aircraft fuselage-wing joints[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(6):1272-1279(in Chinese).
[7] 张洪双, 王青, 柯映林, 等. 基于并联机构调姿的大部件支撑点优选[J]. 计算机集成制造系统, 2014, 20(10):2419-2425. ZHANG H S, WANG Q, KE Y L, et al. Supporting point optimal selection of big part based on parallel mechanism align-positioning[J]. Computer Integrated Manufacturing Systems, 2014, 20(10):2419-2425(in Chinese).
[8] 张洪双, 蒋君侠, 柯映林, 等. 用于大部件调姿的数控定位器布局及行程优化[J]. 计算机集成制造系统, 2013, 19(11):2742-2747. ZHANG H S, JIANG J X, KE Y L, et al. Layout and stroke optimization of numerical control positioner for big parts pose-alignment[J]. Computer Integrated Manufacturing Systems, 2013, 19(11):2742-2747(in Chinese).
[9] UMEYAMA S. Least-squares estimation of transformation parameters between two point patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(4):376-380.
[10] ARUN K S, HUANG T S, BLOSTEIN S D. Least-squares fitting of two 3-D point sets[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987, 9(5):698-700.
[11] 罗芳, 邹方, 周万勇. 飞机大部件对接中的位姿计算方法[J]. 航空制造技术, 2011(3):91-94. LUO F, ZOU F, ZHOU W Y. Posture calculating algorithm in large aircraft component butt[J]. Aeronautical Manufacturing Technology, 2011(3):91-94(in Chinese).
[12] 俞慈君, 李江雄, 余锋杰, 等. 带工程约束的点匹配算法[J]. 机械工程学报, 2010, 46(5):183-190. YU C J, LI J X, YU F J, et al. 3D points registration algorithm with engineering constraints[J]. Journal of Mechanical Engineering, 2010, 46(5):183-190(in Chinese).
[13] 朱绪胜, 郑联语. 基于关键装配特性的大型零部件最佳装配位姿多目标优化算法[J]. 航空学报, 2012, 33(9):1726-1736. ZHU X S, ZHENG L Y. Multiple-objective optimization algorithm based on key assembly characteristics to posture best fit for large component assembly[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(9):1726-1736(in Chinese).
[14] 张斌, 方强, 柯映林. 大型刚体调姿系统最优时间轨迹规划[J]. 机械工程学报, 2008, 44(8):248-252. ZHANG B, FANG Q, KE Y L. Optimal time trajectory planning method for a kind of posture aligning system of large rigid bodies[J]. Journal of Mechanical Engineering, 2008, 44(8):248-252(in Chinese).
[15] 崔学良, 韩先国, 陈五一. 大尺寸弱刚性构件对接装配系统轨迹规划[J]. 计算机集成制造系统, 2011, 17(5):908-914. CUI X L, HAN X G, CHEN W Y. Trajectory planning for a large scale weak rigid component docking assembling system[J]. Computer Integrated Manufacturing Systems, 2011, 17(5):908-914(in Chinese).
[16] 黄鹏, 王青, 李江雄, 等. 基于动力学模型的飞机大部件调姿轨迹规划[J]. 航空学报, 2014, 35(9):2672-2682. HUANG P, WANG Q, LI J X, et al. Adjustment optimal trajectory planning of aircraft component based on dynamics model[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9):2672-2682(in Chinese).
[17] 郭志敏, 蒋君侠, 柯映林. 基于三坐标定位器支撑的飞机大部件调姿内力[J]. 浙江大学学报:工学版, 2010, 44(8):1508-1513. GUO Z M, JIANG J X, KE Y L. Posture alignment internal force in three-axis actuators based assembly system for large aircraft parts[J]. Journal of Zhejiang University:Engineering Science, 2010, 44(8):1508-1513(in Chinese).
[18] 马志强, 李泷杲, 邢宏文, 等. 3-PPPS并联机翼调姿机构运动学标定[J]. 计算机集成制造系统, 2015, 21(9):2378-2383. MA Z Q, LI L G, XING H W, et al. Kinematic calibration of 3-PPPS parallel wing posture adjustment mechanism[J]. Computer Integrated Manufacturing Systems, 2015, 21(9):2378-2383(in Chinese).
[19] 李泷杲, 陈磊, 黄翔, 等. 随动式定位器顶端球心空间坐标的测量工具:CN202171443U[P]. 2012-03-21. LI L G, CHEN L, HUANG X, et al. A measuring tool for ball joint center position of follow-up positioner:CN202171443U[P]. 2012-03-21.
[20] 马志强, 李泷杲, 邢宏文, 等. 3-PPPS并联机翼调姿机构运动学解析正解[J]. 计算机集成制造系统, 2015, 21(2):449-454. MA Z Q, LI L G, XING H W, et al. Analytic forward solution for 3-PPPS parallel wing posture adjustment mechanism[J]. Computer Integrated Manufacturing Systems, 2015, 21(2):449-454(in Chinese).

文章导航

/