固体力学与飞行器总体设计

基于不确定性的旋翼转速优化直升机参数设计

  • 徐明 ,
  • 李建波 ,
  • 彭名华 ,
  • 刘铖
展开
  • 南京航空航天大学 直升机旋翼动力学国家级重点实验室, 南京 210016
徐明 男,博士研究生。主要研究方向:直升机总体设计、旋翼空气动力学、直升机飞行力学。Tel.:025-84895188,E-mail:xuming18237@nuaa.edu.cn;彭名华 男,博士。主要研究方向:直升机总体设计、直升机飞行力学。Tel.:025-84895188,E-mail:pmh@nuaa.edu.cn;刘铖 男,博士研究生。主要研究方向:直升机总体设计、直升机气动设计。Tel.:025-84895188,E-mail:liucheng713@hotmail.com

收稿日期: 2015-07-20

  修回日期: 2015-10-19

  网络出版日期: 2015-10-22

基金资助

中央高校基本科研业务费专项资金;江苏省普通高校研究生科研创新计划(CXLX13_164)

Parameter design of helicopter with optimum speed rotor based on uncertainty optimization

  • XU Ming ,
  • LI Jianbo ,
  • PENG Minghua ,
  • LIU Cheng
Expand
  • National Key Laboratory of Science and Technology on Rotorcraft Aeromechanics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2015-07-20

  Revised date: 2015-10-19

  Online published: 2015-10-22

Supported by

the Fundamental Research Funds for the Central Universities; Funding of Jiangsu Innovation Program for Graduate Education (CXLX13_164)

摘要

为了提高旋翼转速优化直升机总体参数设计质量,基于不确定性多学科设计优化方法,对旋翼转速优化直升机的参数设计进行了研究。首先对最优旋翼转速的不确定性进行分析与建模,同时也考虑了直升机加工制造、材料老化引起的不确定性因素,对比发现最优旋翼转速是旋翼转速优化直升机设计中的主要不确定性因素;然后在协同优化框架下,分别建立了直升机飞行性能、直升机重量、飞行稳定性与变转速涡轴发动机性能计算模型;最后以续航性能为系统学科,悬停性能、飞行稳定性分别作为子学科,进行多学科的不确定性优化设计,得到了3种不确定性优化设计方案。通过对比分析可以发现:第2种方案为旋翼转速优化直升机的最佳参数设计方案,该方案满足悬停需用功率低于350 kW,飞行稳定性指数小于0.8等约束条件的概率不低于95.46%,并且直升机的最大航时期望值也较大。

本文引用格式

徐明 , 李建波 , 彭名华 , 刘铖 . 基于不确定性的旋翼转速优化直升机参数设计[J]. 航空学报, 2016 , 37(7) : 2170 -2179 . DOI: 10.7527/S1000-6893.2015.0285

Abstract

In order to improve the quality of design schemes of helicopter with optimum speed rotor, this paper studies the design method of helicopter with optimum speed rotor, based on uncertainty multidisciplinary design optimization. First of all, the uncertainty factors of helicopter parameters are analyzed and modeled from optimal rotor speed, processing error and material deterioration, and it shows that the optimal rotor speed is the main uncertainty factor in the design of helicopter with optimum speed rotor. And then under the collaborative optimization framework, the models of helicopter flight performance, helicopter weight, flight stability, and the performance of turboshaft engine with variable rotor speed are established. Finally, the design of helicopter with optimum speed rotor based on uncertainty multidisciplinary optimization is investigated, which is based on two subsystem design tasks, i.e., hovering performance and flight stability, and one system level design task about helicopter endurance. Optimization results show that the second scheme for the helicopter with the optimum speed rotor is the best one; its probability of satisfying the constraints of required power being less than 350 kW in hover and index of flight stability being less than 0.8, is not less than 95.46%, and expectation of endurance is also bigger.

参考文献

[1] CELI R. Recent application of design optimization to rotorcraft-A survey[J]. Journal of aircraft, 1999, 36(1):176-189.
[2] CARTY A. An approach to multidisciplinary design analysis and optimization for rapid conceptual design[C]//9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Reston:AIAA, 2002.
[3] JOHNSON W, SINSAY J D. Rotorcraft conceptual design environment[C]//The 3rd International Basic Research Conference Rotorcraft Technology. Nanjing:Nanjing University of Aeronautics and Astronatutics, 2009:33-41.
[4] VU N A, LEE J W, SHU J I. Aerodynamic design optimization of helicopter rotor blades including airfoil shape for hover performance[J]. Chinese Journal of Aeronautics, 2013, 26(1):1-8.
[5] BYRNE D M, TAGUCHI S. The Taguchi approach to parameter design[C]//40th Annual Quality Congress Transactions. Milwaukee, WI:American Society for Quality Control, 1987:19-26.
[6] KOCH P N, SIMPSON T W, ALLEN J K, et al. Statistical approximations for multidisciplinary design optimization:The problem of size[J]. Journal of Aircraft, 1999, 36(1):275-286.
[7] PADMANABHAN D, BATILL S M. An iterative concurrent subspace robust design framework[C]//Proceedings of 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Reston:AIAA, 2000:133-138.
[8] MAVRIS D V, BANDTE O, DELAURENTIS D A. Robust design simulation:A probabilistic approach to multidisciplinary design[J]. Journal of Aircraft, 1999, 36(1):298-397.
[9] DU X, CHEN W. Efficient uncertainty analysis methods for multidisciplinary robust design[J]. AIAA Journal, 2002, 38(8):1474-1478.
[10] ZANG T A, HEMSCH M J, HIBURGER M W, et al. Needs and opportunities for uncertainty based multidisciplinary design methods for aerospace vehicles:NASA/TM-2002-211462[R]. Washington, D.C.:NASA, 2002.
[11] KAREM A E. Optimum speed rotor:U.S. Patent Application NO.60/075, 509[P]. 1998-02-20.
[12] JAMES D, DAVID F. Operational benefits of an optimal widely variable speed rotor[C]//The 66th Annual Forum Proceedings of the American Helicopter Society. Philadelphia, PA:the American Helicopter Society, 2010.
[13] IWATA T, ROCK S M. Benefits of variable rotor speed in integrated helicopter/engine control:AIAA-1993-3851-CP[R]. Reston:AIAA, 1993.
[14] GU X, RENAUD J E. Implicit uncertainty propagation for robust collaborative optimization[C]//Proceedings of DETC01 ASME 2001 Design Engineering Technical Conference and Computers and Information in Engineering Conference. New York:ASME, 2001.
[15] BALLIN M G. A high fidelity real-time simulation of a small turboshaft engine:NASA TM 100991[R]. Washington, D. C.:NASA, 1988.
[16] ROTH B. A work potential perspective of engine component performance:AIAA-2001-3300[R]. Reston:AIAA, 2001.
[17] STEPNIEWSKI W Z, SHINE R A. A comparative study of Soviet vs Westhelicopter, Part 2-Evaluation of weight, maintainability, and design aspect of major component:NASA TM 10062[R]. Washington, D. C.:NASA, 1983.
[18] 徐明, 李建波, 韩东. 旋翼转速优化直升机的纵向操纵性与稳定性分析[J]. 航空动力学报, 2015, 30(6):1374-1381.XU M, LI J B, HAN D. Studies on longitudinal stability and controllability of OSR[J]. Journal of Aerospace Power, 2015, 30(6):1374-1381(in Chinese).
[19] 彭名华, 张呈林. 直升机操纵稳定性优化设计[J]. 南京航空航天大学学报, 2011, 43(3):283-288.PENG M H, ZHANG C L. Optimization design of helicopter stability and control[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2011, 43(3):283-288(in Chinese).
[20] YAO W A, CHEN X Q, ZHAO Y, et al. A fractional spacecraft system assessment tool based on lifecycle simulation under uncertainty[J]. Chinese Journal of Aeronautics, 2012, 25(1):71-82.
[21] 王宇, 余雄庆. 考虑不确定性的飞行总体参数优化方法[J]. 航空学报, 2009, 30(10):1883-1888.WANG Y, YU X Q. Optimization method for aircraft conceptual design under uncertainty[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10):1883-1888(in Chinese).
[22] SIVA C, MURUGAN M S, GANGULI R. Effect of uncertainty on helicopter performance predictions[J]//Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering, 2010, 224(5):549-562.
[23] MURUGAN S, HARURSAMPATH D, GANGULI R. Material uncertainty propagation in helicopter nonlinear aeroelastic response and vibration analysis[J]. AIAA Jouranl, 2009, 46(9):2332-2344.
[24] JUN S, YEE K, LEE J, et al. Robust design optimization of unmanned aerial vehicle coaxial rotor considering operational uncertainty[J]. Journal of Aircraft, 2011, 48(2):353-367.S, Ganguli R. Effect of uncertainty on helicopter performance predictions[C]//Proceedings of IMechE Vol. 224 Part G: Journal of Aerospace Engi-neering, 2015:549-562.
[24] Senthil M, Dineshkumar H, Ranhan G. Material uncer-tainty propagation in helicopter nonlinear aeroelastic response and vibration analysis[J]. AIAA JOURANL, 2009, 46(9):2332-2344.
[25] Sangok J,Kwanjung Y, Jaewon L, et al. Robust design optimization of unmanned aerial vehicle coaxial rotor considering operational uncertainty[J]. JOURNAL OF AIRCRAFT, 2011, 48(2): 353-367.

文章导航

/