激光跟踪仪转站热变形误差建模与补偿方法
收稿日期: 2014-08-16
修回日期: 2014-09-07
网络出版日期: 2015-10-13
基金资助
国家自然科学基金 (51375442)
Thermal deformation error modeling and compensation approach for laser tracker orientation
Received date: 2014-08-16
Revised date: 2014-09-07
Online published: 2015-10-13
Supported by
National Natural Science Foundation of China (51375442)
在飞机数字化装配测量中,激光跟踪仪的转站精度决定着测量精度和装配质量,提高转站精度至关重要。而布置在工装上的公共观测点随温度变化发生的热变形,导致观测点偏离理论位置,往往是降低转站精度的主要原因。以壁板工装为实例,通过有限元模型仿真计算,得到观测点呈线性变形规律,并提出了用单位温度热变形系数矩阵来对理论坐标进行补偿的方法。根据仿真获得的变形规律,又提出了对大量实验数据统计分析来获得系数矩阵的方法。并采用回归分析的方法,检验了仿真和实验两种方式所获得的系数矩阵的相关性和等价性,表明仿真获得的系数矩阵的正确性。最后,用实例验证了工装上观测点热变形的线性关系和用热变形系数矩阵进行补偿的有效性。
杨宝旒 , 俞慈君 , 金涨军 , 李江雄 , 李明飞 . 激光跟踪仪转站热变形误差建模与补偿方法[J]. 航空学报, 2015 , 36(9) : 3155 -3164 . DOI: 10.7527/S1000-6893.2014.0217
It is crucial to improve the laser tracker orientation accuracy, which determines the measurement accuracy and assembly quality in the process of aircraft digital assembly. The change of temperature often leads to ERS (Enhanced Reference System) points' deviation from the theoretical position, which is the main cause for the reduction of orientation accuracy. A panel fixture is studied as an example and the deformation of ERS points turns out to change linearly through the calculation of finite element model (FEM). Then a method for computing the thermal deformation coefficient matrix in per degree is proposed to compensate the theoretical coordinate. According to the deformation rule, another method to get the matrix coefficient is proposed using statistical analysis of experimental data. We check the relevance and equivalence of coefficient matrix getting from FEM and experiment with regression analysis, which validate the correctness of coefficient matrix from FEM. Finally, linear relationship of thermal deformation and effectiveness of compensation are demonstrated by examples.
[1] Zou J H, Liu Z C, Fan Y Q. Large-size airplane parts digital assembly technology[J]. Computer Integrated Manufacturing Systems, 2007, 13(7): 1367-1373 (in Chinese). 邹冀华, 刘志存, 范玉青. 大型飞机部件数字化对接装配技术研究[J]. 计算机集成制造系统, 2007, 13(7): 1367-1373.
[2] Du F Z, Chen Z H, Tang X Q. Precision analysis of iGPS measurement field and its application[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(9): 1737-1745 (in Chinese). 杜福洲, 陈哲涵, 唐晓青. iGPS测量场精度分析及其应用研究[J]. 航空学报, 2012, 33(9): 1737-1745.
[3] Qu W W, Dong H Y, Ke Y L. Pose accuracy compensation technology in robot-aided aircraft assembly drilling process[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(10): 1951-1960 (in Chinese). 曲巍崴, 董辉跃, 柯映林. 机器人辅助飞机装配制孔中位姿精度补偿技术[J]. 航空学报, 2011, 32(10): 1951-1960.
[4] Arun K S, Huang T S, Blostein S D. Least-squares fitting of two 3-D point sets[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987, 9(5): 698-700.
[5] Horn B K P. Closed-form solution of absolute orientation using unit quaternions[J]. Journal of the Optical Society of America A, 1987, 4(4): 629-642.
[6] Horn B K P, Hilden H M, Negahdaripour S. Closed-form solution of absolute orientation using orthonormal matrices[J]. Journal of the Optical Society America, 1988, 5(7): 1127-1135.
[7] Walker M W, Shao L, Volz R A. Estimating 3-D location parameters using dual number quaternions[J]. CVGIP: Image Understanding, 1991, 54(3): 358-367.
[8] Eggert D W, Lorusso A, Fisher R B. Estimating 3-D rigid body transformations: A comparison of four major algorithms[J]. Machine Vision and Applications, 1997, 9(5): 272-290.
[9] Geng N, Zhu J G, Lao D B, et al. Theory and algorithm of coordinate system registration based on rigid body kinematics[J]. Chinese Journal of Sensors and Actuators, 2010, 23(8): 1088-1092 (in Chinese). 耿娜, 邾继贵, 劳达宝, 等. 基于刚体运动学的坐标系配准理论及算法[J]. 传感技术学报, 2010, 23(8): 1088-1092.
[10] Zhang C F, Zhang J, Tang W Y, et al. A coordinate transformation method of moving the station of large scale measurement based on mode searching[J]. Aviation Metrology & Measurement Technology, 2003, 23(6): 12-14 (in Chinese). 张春富, 张军, 唐文彦, 等. 一种基于模式搜索的大尺寸测量移站坐标转换方法[J]. 航空计测技术, 2003, 23(6): 12-14.
[11] Yu C J, Li J X, Yu F J, et al. 3D points registration algorithm with engineering constraints[J]. Journal of Mechanical Engineering, 2010, 46(5): 183-190 (in Chinese). 俞慈君, 李江雄, 余锋杰, 等. 带工程约束的点匹配算法[J]. 机械工程学报, 2010, 46(5): 183-190.
[12] Alfons M, Scott S. Dynamic weighting of laser tracker measurements for bundle adjustment[R]. Wetzlar: Leica Geosystems.
[13] Calkins J M, Salerno R J. A practical method for evaluating measurement system uncertainty[C]//Boeing Large Scale Metrology Conference, 2000.
[14] Mitchell J, Spence A, Manhtriet H, et al. Sensors fusion of laser tracker for use in large-scale precision metrology[C]//Photonics Technologies for Robotics, Automation, and Manufacturing. International Society for Optics and Photonics, 2004: 57-65.
[15] Zhang F M, Qu X H, Ye S D. Uncertainty analysis in large-scale measurement based on Monte Carlo simulation method[J]. Computer Integrated Manufacturing Systems, 2009, 15(1): 184-188 (in Chinese). 张福民, 曲兴华, 叶声达. 基于蒙特卡罗仿真方法的大尺寸测量不确定度分析[J]. 计算机集成制造系统, 2009, 15(1): 184-188.
[16] Zhang C F, Zhang J, Xu W H, et al. Evaluation of site measuring uncertainty of laser tracker[J]. Acta Metrologica Sinica, 2005, 26(1): 20-22 (in Chinese). 张春富, 张军, 许文海, 等. 激光跟踪仪现场测量不确定度的评定[J]. 计量学报, 2005, 26(1): 20-22.
[17] Yang J G, Fan K G, Du Z C. The technology of real-time thermal error compensation on NC machine tolls[M]. Beijing: China Machine Press, 2013: 87-102 (in Chinese). 杨建国, 范开国, 杜正春. 数控机床误差实时补偿技术[M]. 北京: 机械工业出版社, 2013: 87-102.
[18] Fei Y T. Theory and application of mechanical thermal deformation[M]. Beijing: National Defense Industry Press, 2009: 1-13 (in Chinese). 费业泰. 机械温度变形理论及应用[M]. 北京: 国防工业出版社, 2009: 1-13.
[19] Cao J F, Shi Y P. ABAQUS FEA common questions and answers[M]. Beijing: China Machine Press, 2009: 49-56 (in Chinese). 曹金凤, 石亦平. ABAQUS有限元分析常见问题解答[M]. 北京: 机械工业出版社, 2009: 49-56.
[20] Sheng Z, Xie S Q, Pan C Y. Theory of probability and mathematical statistics professional[M]. 3rd ed. Beijing: Higher Education Press, 2007: 159-170 (in Chinese). 盛骤, 谢式千, 潘承毅. 概率论与数理统计[M]. 3版. 北京: 高等教育出版社, 2007: 159-170.
/
〈 |
|
〉 |