直升机旋翼/尾桨/垂尾气动干扰计算研究
收稿日期: 2014-09-26
修回日期: 2014-11-12
网络出版日期: 2015-10-13
基金资助
国家自然科学基金 (11302103); 航空科学基金 (20135752055)
Computational research on aerodynamic characteristics of helicopter main-rotor/tail-rotor/vertical-tail interaction
Received date: 2014-09-26
Revised date: 2014-11-12
Online published: 2015-10-13
Supported by
National Natural Science Foundation of China (11302103); Aeronautical Science Foundation of China (20135752055)
建立了一个基于计算流体力学(CFD)技术的直升机旋翼/尾桨/垂尾气动干扰分析方法。在该方法中,选取Navier-Stokes方程为控制方程,使用二阶迎风的Roe格式进行空间离散,并选取隐式LU-SGS(Lower-Upper Symmetric Gauss-Seidel)格式进行时间推进,湍流模型为B-L(Baldwin-Lomax)模型;为了实现旋翼、尾桨和垂尾网格之间的流场信息交换,采用运动嵌套网格方法。应用所建立的方法,对Helishape 7A旋翼和Lynx直升机尾桨进行了算例计算,并与试验数据进行对比,验证了方法的正确性。着重针对旋翼/尾桨干扰特性进行了计算,并进一步计入垂尾的干扰,对垂尾/尾桨干扰以及旋翼/尾桨/垂尾干扰特性进行了研究,分析了旋翼、尾桨和垂尾相互干扰的规律。结果表明:对于不同的垂尾/尾桨构型,阻塞面积越大,对应的尾桨拉力也较大,但尾桨和垂尾获得的净拉力却减小,且不同阻塞面积下,推力式构型尾桨比拉力式尾桨具有更大的净拉力;然而,在前飞过程中,直升机垂尾对旋翼与尾桨干扰的影响很小。
关键词: 气动干扰; 嵌套网格; Navier-Stokes方程; 直升机; 计算流体力学
叶舟 , 徐国华 , 史勇杰 . 直升机旋翼/尾桨/垂尾气动干扰计算研究[J]. 航空学报, 2015 , 36(9) : 2874 -2883 . DOI: 10.7527/S1000-6893.2014.0314
A computational method based on computational fluid dynamics (CFD) technology is developed for helicopter main-rotor/tail-rotor/vertical-tail interaction analysis. In the present method, Navier-Stokes equations are utilized as the control equations. For the spatial and time discretization, the second-order upwind Roe scheme and implicit LU-SGS (Lower-Upper Symmetric Gauss-Seidel) scheme are used respectively, and the B-L (Baldwin-Lomax) model is used as the turbulence model. Moving embedded grid method is applied to exchanging the flowfield information among the grids of main-rotor, tail-rotor and vertical-tail. By the method developed, example calculations on the flowfield of well-known Helishape 7A rotors and Lynx tail rotors are performed, and the validity of the present method is demonstrated by comparing the calculated results with available experimental data. Then, numerical simulations for main-rotor/tail-rotor aerodynamic interference are made. Furthermore, taking vertical tail interaction into consideration, tail-rotor/vertical-tail and main-rotor/tail-rotor/vertical-tail interaction calculations are conducted to investigate the interaction mechanism between main rotor, tail rotor and vertical tail. It is shown that, for different vertical-tail/tail-rotor configurations, a larger blockage area always leads to a greater tail-rotor trust, but a smaller clean trust of vertical tail and tail rotor. In addition, the clean tail-rotor trusts of "push configuration" are always higher than those of the "pull configuration" for different blockage areas. It is also shown that, vertical tail has little influences on main-rotor/tail-rotor interaction in forward flight.
[1] Leishman J G, Bi N. Aerodynamic interactions between a rotor and a fuselage in forward flight[J]. Journal of the American Helicopter Society, 1990, 35(3): 22-31.
[2] Xu G H, Zhao Q J, Gao Z, et al. Prediction of aerodynamic interactions of helicopter rotor on its fuselage[J]. Chinese Journal of Aeronautics, 2002, 15(1): 12-17.
[3] Renaud T, O'Brien D, Smith M, et al. Evaluation of isolated fuselage and rotor-fuselage interaction using CFD[C]//Proceedings of the 60th AHS Annual Forum. Virginia: American Helicopter Society, 2004.
[4] Tanabe Y, Saito S, Otani I. Validation of computational results of rotor/fuselage interaction analysis using rflow3d code, JAXA-RR-10-001E[R]. Tokyo: Japan Aerospace Exploration Agency, 2010.
[5] Nam H J, Park Y M, Kwon O J. Simulation of unsteady rotor-fuselage aerodynamic interaction using unstructured adaptive meshes[J]. Journal of the American Helicopter Society, 2006, 51(2): 141-149.
[6] Doolan C J, Leclercq D. An anechoic wind tunnel for the investigation of the main-rotor/tail-rotor blade vortex interaction[C]//Proceedings of the 6th Australian Vertiflite Conference on Helicopter Technology. Virginia: American Helicopter Society International, Inc, 2007.
[7] Yang C, Aoyama T, Kondo N, et al. Numerical analysis for main-rotor/tail-rotor interaction of helicopter, JAXA-RR-08-006E[R]. Tokyo: Japan Aerospace Exploration Agency, 2009.
[8] Yin J. Simulation of tail rotor noise reduction and comparison with helinovi wind tunnel test data[C]//Proceedings of the 67th AHS Annual Forum. Virginia: American Helicopter Society, 2011.
[9] Fan F, Xu G H, Shi Y J. Calculations of unsteady aerodynamic interaction between main-rotor and tail-rotor of helicopters based on CFD method[J]. Journal of Aerospace Power, 2014, 29(11): 2633-2642 (in Chinese). 樊枫, 徐国华, 史勇杰. 基于CFD方法的直升机旋翼/尾桨非定常气动干扰计算[J]. 航空动力学报, 2014, 29(11): 2633-2642.
[10] Tan J F, Wang H W, Wu C, et al. Rotor/empennage unsteady aerodynamic interaction with unsteady panel/viscous vortex particle hybrid method[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3): 643-656 (in Chinese). 谭剑锋, 王浩文, 吴超, 等. 基于非定常面元/粘性涡粒子混合法的旋翼/平尾非定常气动干扰研究[J]. 航空学报, 2014, 35(3): 643-656.
[11] Xu H Y, Ye Z Y. Numerical simulation of unsteady flow around forward flight helicopter with coaxial rotors[J]. Chinese Journal of Aeronautics, 2011, 24(1): 1-7.
[12] Fan F, Shi Y J, Xu G H. Computational research on aerodynamic and aeroacoustic characteristics of scissors tail-rotor in hover[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9): 2100-2109 (in Chinese). 樊枫, 史勇杰, 徐国华. 剪刀式尾桨悬停状态气动力及噪声特性计算研究[J]. 航空学报, 2013, 34(9): 2100-2109.
[13] Roe P L. Approximate riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(2): 357-372.
[14] Luo H, Baum J D, Loehner R. A fast, matrix-free implicit method for computing low Mach number flows on unstructured grids[J]. International Journal of Computational Fluid Dynamics, 2000, 14(2): 133-157.
[15] Fan F, Xu G H, Shi Y J. Computational research on aerodynamic forces of scissors tail-rotor in forward flight based on the N-S equations[J]. Acta Aerodynamica Sinica, 2014, 32(4): 527-533 (in Chinese). 樊枫, 徐国华, 史勇杰. 基于N-S方程的剪刀式尾桨前飞状态气动力计算研究[J]. 空气动力学学报, 2014, 32(4): 527-533.
[16] Chiu I T, Meakin R. On automating domain connectivity for overset grids, NASA-CR-199522[R]. Washington, D.C.: NASA, 1995.
[17] Biava M, Bindolino G, Vigevano L. Single blade computations of helicopter rotors in forward flight, AIAA-2003-52[R]. Reston: AIAA, 2003.
[18] Signor D B, Yamauchi G K, Smith C A, et al. Performance and loads data from an outdoor hover test of a lynx tail rotor, NASA-TM-101057[R]. Washington, D.C.: NASA,1989.
[19] Shi Y J, Xu G H. Research on the influence of flight parameters on helicopter rotor BVI noise characteristics[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(11): 2520-2528 (in Chinese). 史勇杰, 徐国华. 飞行参数对旋翼桨-涡干扰噪声特性的影响机理研究[J]. 航空学报, 2013, 34(11): 2520-2528.
[20] Kutz B M, Kowarsch U, Keler M, et al. Numerical investigation of helicopter rotors in ground effect, AIAA-2012-2913[R]. Reston: AIAA, 2012.
/
〈 | 〉 |