固体力学与飞行器总体设计

折叠式群伞充气接触的膜索非线性有限元算法

  • 樊玉新 ,
  • 夏健
展开
  • 南京航空航天大学 航空宇航学院, 南京 210016
樊玉新,男,博士研究生。主要研究方向:流固耦合。Tel:025-84893062,E-mail:935850952@qq.com;夏健,男,博士,教授,博士生导师。主要研究方向:基于非结构网格的数值模拟方法及并行算法、多体气动干扰与分离、流固耦合、气动优化。Tel:025-84891023,E-mail:jxia@nuaa.edu.cn

收稿日期: 2015-03-27

  修回日期: 2015-08-28

  网络出版日期: 2015-09-30

Membrane-cable-based nonlinear finite element method for inflation and contact problem of folded parachute cluster

  • FAN Yuxin ,
  • XIA Jian
Expand
  • College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2015-03-27

  Revised date: 2015-08-28

  Online published: 2015-09-30

摘要

降落伞由折叠到打开的充气过程和多束降落伞捆绑在一起充气的过程都伴随着一个高度非线性的柔性结构接触问题,因此模拟降落伞群伞流固耦合问题必须首先解决降落伞群伞非线性结构接触的数值模拟问题。对于降落伞这类柔性瞬变非线性织物结构,数值模拟织物系统的接触现象以及预测接触结果对降落伞工作状况的影响对于降落伞群伞设计具有很重要的指导意义。基于三维降落伞膜索非线性有限元编程模拟技术设计了一种针对单伞和群伞非线性动力系统的接触搜索算法,推导设计了针对接触随机性的接触切线刚度矩阵计算方法。针对降落伞群伞非线性有限元计算的庞大数值计算量,设计编写了一种基于消息传递接口(MPI)通信协议的膜索结构并行接触模拟FORTRAN程序,测试了该数值模拟程序的并行计算效率。针对高度折叠的C-9降落伞群伞充气问题,使用PC-Cluster计算机群进行了数值仿真模拟,验证了该接触非线性有限元程序的计算效果,预测了C-9降落伞群伞的接触过程,并分析接触现象对降落伞群伞充气工作的影响。

本文引用格式

樊玉新 , 夏健 . 折叠式群伞充气接触的膜索非线性有限元算法[J]. 航空学报, 2016 , 37(3) : 894 -905 . DOI: 10.7527/S1000-6893.2015.0239

Abstract

The inflation process of a single parachute from the initial folded configuration as well as the inflation of a parachute cluster tied at the bottom node is always coupled with a highly nonlinear contact phenomenon for that kind of thin flexible fabric structures. Conduction of numerical fluid-structure interaction simulation of parachute cluster must first figure out how to simulate nonlinear structural contact problem by applying proper numerical method. According to the transient and nonlinear dynamic behavior of parachute fabric system, using numerical method to predict parachutes' contact phenomenon and analyze the influence of contact mechanism for thin fabric structures will provide important meaning during parachute cluster designing. Based on the three-dimensional membrane-cable nonlinear finite element analysis code, a nonlinear contact algorithm for single folded parachute as well as parachute cluster is presented. In order to simulate arbitrary contact problems during inflation, a computation method for contact tangent stiffness matrix is also proposed in this paper. Because of the large scale of computation during nonlinear finite analysis of parachute cluster inflation, a parallel computation technique based on message passing interface(MPI) standard for membrane-cable structures is designed and coded by FORTRAN to solve this kind of problem. Finally, numerical simulations for highly folded C-9 parachute cluster inflation are carried out on a PC-Cluster computer group to verify the ability and efficiency of this new computational program and predict the contact phenomenon during inflation; the influence of contact mechanism has also been analyzed for the parachute cluster system.

参考文献

[1] ACCORSI M, LEONARD J, BENNEY R, et al. Structure modeling of parachute dynamics[J]. AIAA Journal, 2000, 38(1):139-146.
[2] STEIN K, TEZDUYAR T E, SATHE S, et al. Simulation of parachute dynamics during control line input operations:AIAA-2003-2151[R]. Reston:AIAA, 2003.
[3] STEIN K, BENNEY R J, TEZDUYAR T E, et al. Fluid-structure interactions of a round parachute:Modeling and simulation techniques[J]. Journal of Aircraft, 2001, 38(5):800-808.
[4] SADECK J E, LEE C K. Continuous disreefing method for parachute opening[J]. Journal of Aircraft, 2009, 46(2):501-504.
[5] JOHARI H, DESABRAIS K J. A novel parachute canopy geometry for airdrop:AIAA-2005-1619[R]. Reston:AIAA,2005.
[6] 余莉, 史献林, 明晓. 降落伞充气过程的数值模拟[J]. 航空学报, 2007, 28(1):52-57. YU L, SHI X L, MING X. Numerical simulation of parachute during opening process[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(1):52-57(in Chinese).
[7] 张红英, 刘卫华, 童明波, 等. 降落伞初始充气阶段数值模拟[J]. 南京航空航天大学学报, 2009, 41(2):207-211. ZHANG H Y, LIU W H, TONG M B, et al. Numerical simulation of parachute initial inflation phase[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2009, 41(2):207-211(in Chinese).
[8] 吴卓, 曹义华, 宋乾福. 锥形降落伞开伞过程流动结构相互作用的数值模拟[J]. 航空动力学报, 2009,24(7):1584-1593. WU Z, CAO Y H, SONG Q F. Numerical simulation of fluid-structure interaction in conical parachute's opening process[J]. Journal of Aerospace Power, 2009, 24(7):1584-1593(in Chinese).
[9] 高兴龙, 唐乾刚, 张青斌, 等. 开缝伞充气过程流固耦合数值研究[J]. 航空学报, 2013, 34(10):2265-2276. GAO X L, TANG Q G, ZHANG Q B, et al. Numerical study on fluid-structure interaction of slot-parachute's inflation process[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(10):2265-2276(in Chinese).
[10] 贾贺, 荣伟, 陈国良. 基于LS-DYNA软件的降落伞充气过程仿真研究[J]. 航天器环境工程, 2010, 27(3):367-373. JIA H, RONG W, CHEN G L. The simulation of parachute inflation process based on LS-DYNA software[J]. Spacecraft Environment Engineering, 2010, 27(3):367-373(in Chinese).
[11] TUTT B, PETERSON D, ROLAND S, et al. Parachute load prediction using a combination of empirical data and fluid-structure interaction simulations:AIAA-2011-2544[R]. Reston:AIAA, 2011.
[12] KIM J D, LI Y, LI X L. Simulation of parachute FSI using the front tracking method[J]. Journal of Fluids and Structures, 2013, 37:100-119.
[13] LU K, ACCORSI M, LEONARD J. Finite element analysis of membrane wrinkling[J]. International Journal for Numerical Methods in Engineering, 2001, 50(5):1017-1038.
[14] ZHANG W Q, ACCORSI M, LEONARD J. Parallel implementation of structural dynamic analysis for parachute simulation[J]. AIAA Journal, 2006, 44(7):1419-1427.
[15] TEZDUYAR T E, OSAWA Y. Fluid-structure interactions of a parachute crossing the far wake of an aircraft[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 191(6-7):717-726.
[16] XU Z L, ACCORSI M, LEONARD J. Simulation of dynamic contact problems in parachute systems[J]. Journal of Aerospace Computing Information and Communication, 2004, 1(7):288-307.
[17] BAZILEVS Y, TAKIZAWA K, TEZDUYAR T E. Computational fluid-structure interaction:Methods and applications[M]. Hoboken, NJ:John Wiley & Sons Ltd., 2013:163-167.
[18] LEE E S, YOUN S K. Finite element analysis of wrinkling membrane structures with large deformations[J]. Finite Elements in Analysis and Design, 2006, 42(8-9):780-791.
[19] 唐建民, 卓家寿. 悬索结构大位移分析改进的两节点索单元模型[J]. 河海大学学报, 1999, 27(4):16-19. TANG J M, ZHUO J S. An improved two-node cable element for large deformation analysis of cable structures[J]. Journal of Hohai University, 1999, 27(4):16-19(in Chinese).
[20] LAURSEN T A. Computational contact and impact mechanics, fundamentals of modeling interfacial phenomena in nonlinear finite element analysis[M]. New York:Springer-Verlag Berlin Heidelberg, 2002:109-196.
[21] LAURSEN T A, SIMO J C. A continuum-based finite element formulation for the implicit solution of multibody, large deformation frictional contact problems[J]. International Journal for Numerical Methods in Engineering, 1993, 36(20):3451-3485.
[22] LEE C K. Experimental investigation of full-scale and model parachute opening[C]//8th Aerodynamic Decelerator and Balloon Technology Conference. Reston:AIAA, 1984:220.

文章导航

/