Z-pin增强复合材料帽型加筋壁板接头拉伸性能
收稿日期: 2015-07-20
修回日期: 2015-08-13
网络出版日期: 2015-09-25
基金资助
国家"973"计划(2014CB046501);航空科学基金(2015ZE52049);江苏高校优势学科建设工程资助项目
Tensile performance of composites' hat stiffener reinforced wall joint by Z-pin
Received date: 2015-07-20
Revised date: 2015-08-13
Online published: 2015-09-25
Supported by
National Basic Research Program of China (2014CB046501);Aeronautical Science Foundation of China (2015ZE52049);A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
为了提高复合材料帽型加筋壁板结构中筋条与蒙皮界面处的连接强度,引入Z-pin三维增强技术。制备了Z-pin增强帽型接头试样,并对其进行拉伸试验,研究Z-pin对帽型接头界面增强机理及不同Z-pin体积分数、直径及加载跨距对筋条与蒙皮界面处连接性能的影响规律。结果表明:Z-pin直径为0.5 mm、植入角度为90°时,在体积分数0%~1.0%范围内,Z-pin增强帽型接头拉伸强度随着体积分数的增加而增加,增长趋势随体积分数增加而减缓,含1.0% Z-pin增强帽型接头比未增强接头强度提高了31.2%,在体积分数1.0%~1.5%范围内,Z-pin增强帽型接头拉伸强度呈降低趋势;Z-pin直径对帽型接头拉伸强度影响不显著;随着加载跨距的增加,含0.5%(直径0.5 mm)Z-pin增强帽型接头伴随有失效模式转变,拉伸强度呈现降低趋势。
李吻 , 李勇 , 还大军 , 褚奇奕 , 陈浩然 . Z-pin增强复合材料帽型加筋壁板接头拉伸性能[J]. 航空学报, 2016 , 37(6) : 2003 -2012 . DOI: 10.7527/S1000-6893.2015.0259
To enhance the joint strength on interface between the skin and the stiffener of polymer composites' hat stiffener wall structure, the 3D reinforcing technology of Z-pin is used for hat stiffener wall joints. Hat joint specimens reinforced with different configurations of Z-pin are manufactured and tested by tensile, the mechanism reinforced with Z-pin is analyzed and the effects of the volume fraction, diameter of the Z-pin and load span on the joint performance on interface between the skin and the stiffener are investigated. It turns out:when Z-pin's diameter is 0.5 mm and implant angle is 90°, the joint strength increases with Z-pin volume fraction increasing from 0% to 1.0%, but its increase trend slows down with Z-pin volume fraction increasing, the strength of hat joint with Z-pin fraction of 1.0% is higher than that without Z-pinned by 31.1%, thus the Z-pinned hat joints pull-off strength decreases with Z-pin volume fraction from 1.0% to 1.5%. The effect of the diameter of Z-pin on the pull-off strength of hat joint is not significant. With the increasing of the load span, the pull-off strength of hat joints reinforced with Z-pin fraction of 0.5% (diameter of 0.5 mm) decreases with the failure model transforming.
Key words: polymer composites; hat joints; Z-pin; joint performance; tensile test
[1] 李玉成, 温海波, 安静波. 复合材料加筋壁板设计、分析与试验研究[J]. 纤维复合材料, 2011(4):14-18. LI Y C, WEN H B, AN J B. Design, analysis, experimental studies of composite stiffened panel[J]. Fiber Composite, 2011(4):14-18(in Chinese).
[2] 杨乃宾. 新一代大型客机复合材料结构[J]. 航空学报, 2008, 29(3):596-604. YANG N B. Composite structures for new generation large commercial jet[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3):596-604(in Chinese).
[3] 涂睿. 含泡沫填充复合材料加筋板非线性屈曲模拟试验方法研究[D]. 上海:上海交通大学, 2011:1-4. TU R. Numerical study on nonlinear buckling testing method of hat-stiffened composite plate[D]. Shanghai:Shanghai Jiao Tong University, 2011:1-4(in Chinese).
[4] YAP J W H, SCOTT M L, THOMSON R S, et al. The analysis of skin-to-stiffener debonding in composite aerospace structures[J]. Composite Structures, 2002, 57(1-4):425-435.
[5] VIJAYARAJU K, MANGALGIRI P D, DATTAGURU B. Experimental study of failure and failure progression in T-stiffened skins[J]. Composite Structures, 2004, 64(2):227-234.
[6] 孙晶晶, 张晓晶, 宫占峰, 等. 复合材料帽型筋条脱粘的失效机理分析[J]. 航空学报, 2013, 34(7):1615-1626. SUN J J, ZHANG X J, GONG Z F, et al. Failure mechanism study on omega stringer debonding[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(7):1615-1626(in Chinese).
[7] MOURITZ A P, BANNISTER M K, FALZON P J, et al. Review of application for advanced three-dimensional fiber textile composites[J]. Composite Part A:Applied Science and Manufacturing, 1990, 30(12):1445-1461.
[8] PATRIDGE I K, CARTIE D D R, BONNINGTON T. Manufacture and performance of Z-pinned composite[C]//Advanced Polymeric Composite. Boca Raton:CRC Press, 2003:103-139.
[9] MOURITZ A P. Review of z-pinned composite laminates[J]. Composite Part A:Applied Science and Manufacturing, 2007, 38(12):2383-2397.
[10] RUGG K L, COX B N, MASSABO R. Mixed mode delamination of polymer composite laminates reinforced through the thickness by z-fibers[J]. Composite Part A:Applied Science and Manufacturing, 2002, 33(2):177-190.
[11] FREELS J K. Modeling fraction in Z-pinned composite co-cored laminates using smeared properties and cohesive elements in DYNA3D[D]. Alabama:Air University, 2006:20-60.
[12] KOH T M, FEIH S, MOURITZ A P. Experimental determinationof the structural properties and strengthening mechanisms of z-pinned composite T-joints[J]. Composite Structures, 2011, 93(9):2222-2230.
[13] JAVIER T V, BRUNO C, BARRAUJ J, et al. Multi-level analysis of low-cost Z-pinned composite joints:Part 2:Joint behaviour[J]. Composites Part A:Applied Science and Manufacturing, 2011, 42(12):2082-2092.
[14] KOH T M, FEIH S, MOURITZ A P. Strengthening mechanics of thin and thick composite T-joints reinforced with z-pins[J]. Composites Part A:Applied Science and Manufacturing, 2012, 43(8):1308-1317.
[15] PARK Y B, LEE B H, KWEON J H, et al. The strength of composite bonded T-joints transversely reinforced by carbon pins[J]. Composite Structures, 2012, 94(2):625-634.
[16] NANAYAKARA A M, FEIH S, MOURITZ A P. Improving the frac ture resistance of sandwich composite T-joints by Z-pinning[J]. Composite Structure, 2013, 96(1):207-215.
[17] HEIMBS S, NOGUEIRA A C, HOMBERGSMEIER E, et al. Failure behavior of composite T-joints with novel metallic arrow-pin reinforcement[J]. Composite Structures, 2014, 110:16-28.
[18] EMILE G, AARON L, RICHARD B, et al. Evaluation of toughening concepts at structural features in CFRP-Part I:Stiffener pull-off[J]. Composites Part A:Applied Science and Manufacturing, 2006, 37(10):1521-1535.
[19] JI H, KWEON J H, CHOI J H. Fatigue characteristics of stainless steel pin-reinforced composite hat joints[J]. Composite Structures, 2014, 108:49-56.
[20] 李成虎, 燕瑛. Z-pin增强复合材料T型接头层间性能的建模与分析[J]. 复合材料学报, 2010, 27(6):152-157. LI C H, YAN Y. Modeling and analysis of Z-pin reinforcing in through-thickness direction of composite T-joint[J]. Acta Materiae Composite Sinica, 2010, 27(6):152-157(in Chinese).
[21] 李梦佳, 陈普会, 孔斌, 等. Z-pin参数对复合材料T型接头拉脱承载能力的影响[J]. 复合材料学报, 2015, 32(2):571-578. LI M J, CHEN P H, KONG B, et al. The effect of parameters of Z-pin on the pull-off carrying capacity of composite T-joints[J]. Acta Materiae Composite Sinica, 2015, 32(2):571-578(in Chinese).
[22] KIM G H, CHOI J H, KWEON J H. Manufacture and performance evaluation of the composite hat-stiffener panel[J]. Composite Structures, 2010, 92(9):2276-2284.
[23] 蒲永伟, 湛利华. 航空先进复合材料帽型加筋构件制造关键技术探究[J]. 航空制造技术, 2015(4):78-81. PU Y W, ZHAN L H. Study on the key manufacturing technology of aeronautical advanced composite hat-stiffened structures[J]. Aeronautical Manufacturing Technology, 2015(4):78-81(in Chinese).
[24] DAI S C, YAN W Y, LIU H Y, et al. Experimental study on z-pin bridging law by pullout test[J]. Composite Science and Technology, 2004, 64(16):2451-2457.
[25] YAN W Y, LIU H Y, MAI Y W. Numerical study on the mode I delamination toughness of z-pinned laminates[J]. Composite Science and Technology, 2003, 63(10):1481-1493.
[26] YAN W Y, LIU H Y, MAI Y W. Mode II delamination toughness of z-pinned laminates[J]. Composite Science and Technology, 2004, 64(13-14):1937-1945.
[27] 孙先念, 郑长良. 层合复合材料Z-pinning增强技术的力学进展[J]. 航空学报, 2006, 27(6):1194-1201. SUN X N, ZHENG C L. Advanced on modeling through-the-thickness reinforcement of laminated composite by Z-pinning[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(6):1194-1201(in Chinese).
[28] 董晓阳, 李勇, 张向阳, 等. Z-pin增强树脂基复合材料单搭接连接性能[J]. 航空学报, 2013, 34(5):1302-1310. DONG X Y, LI Y, ZHANG X Y, et al. Performance of polymer composite single lap joints reinforced by Z-pin[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5):1302-1310(in Chinese).
[29] YASAEE M, LANDER J K, ALLEGRI G, et al. Experimental characterisation of mixed mode traction-displacement relationships for a single carbon composite Z-pin[J]. Composite Science and Technology, 2014, 94:123-131.
/
〈 | 〉 |