动态间断装配法模拟斜激波壁面反射
收稿日期: 2014-12-09
修回日期: 2015-09-16
网络出版日期: 2015-09-23
A moving discontinuity fitting technique to simulate shock waves impinged on a straight wall
Received date: 2014-12-09
Revised date: 2015-09-16
Online published: 2015-09-23
基于非结构动网格技术和边界装配思想提出了动态间断装配法,该方法能够应用于求解含有间断的流动问题。无论入射激波还是反射激波都是作为边界进行处理,激波运动速度由兰金-许贡纽(Rankine-Hugoniot)关系确定。激波作为动网格的一部分,其运动由动网格技术实现。采用该方法模拟了超声速二维流场中激波与壁面相交问题,并且与捕捉法进行比较,二者的流场结构符合良好,但是在细节上还是存在明显差异。通过对流动结构的分析,得出采用装配方法得到的流场要优于捕捉方法的结论。激波壁面反射的问题模拟,也说明了边界激波装配方法对于复杂的激波相交问题是具有处理能力的。
刘君 , 邹东阳 , 董海波 . 动态间断装配法模拟斜激波壁面反射[J]. 航空学报, 2016 , 37(3) : 836 -846 . DOI: 10.7527/S1000-6893.2015.0254
A new shock-fitting technique called the moving discontinuity fitting algorithm has been proposed, which is based on the unstructured moving grids technique and boundary shock fitting technique. No matter the incident shock wave or reflected shock wave is treated as a boundary of a flow field, the velocity of shock moving is determined by Rankine-Hugoniot(R-H) relations. The shock wave is fitted as a part of the unstructured moving grids. And the unstructured moving grids technique is used to make the motion of shock waves come true. A problem about shock waves reflection on a straight wall is simulated using this new technique. Compared with the result obtained by shock capturing technique in detail, the result obtained by the new shock fitting is better, though they are similar in general. Using this method, not only incident shock waves but also the reflection shock waves can be fitted. This method shows that the boundary shock fitting technique is also capable of simulating shock interaction even Mach reflection.
[1] 吴子牛, 庄逢甘. 气体动力学中激波的计算[C]//钱学森技术科学思想与力学论文集. 北京:中国空气动力学会, 2001:270-276. WU Z N, ZHUANG F G. The computation of shock waves in the gas dynamics[C]//Tsien Hsue-shen Thought of Science and Technology and Mechanical Papers. Beijing:Chinese Aerodynamics Research Society, 2001:270-276(in Chinese).
[2] BONFIGLIOLI A, PACIORRI R. Hypersonic flow computations on unstructured grids:Shock-capturing vs. shock-fitting approach:AIAA-2010-4449[R]. Reston:AIAA, 2010.
[3] MORETTI G. Computation of flows with shocks[J]. Annual Review of Fluid Mechanics, 1987, 19(3):313-317.
[4] MORETTI G, ABBETT M. A time-dependent computational method for blunt body flows[J]. AIAA Journal, 1966, 4(12):2136-2141.
[5] YEE H C, WARMING R F, HARTEN A. Implicit total variation diminishing(TVD) schemes for steady-state calculations[J]. Journal of Computational Physics, 1985, 57(3):327-360.
[6] 张涵信, 沈孟育. 计算流体力学——差分格式原理和应用[M]. 北京:国防工业出版社, 2003:134-172. ZHANG H X, SHEN M Y. Computational fluid dynamics-theory and application of difference scheme[M]. Beijing:National Defence Industry Press, 2003:134-172(in Chinese).
[7] HARTEN A, ENGQUIST B, OSHER S, et al. Uniformly high order accurate essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1987, 71(2):231-303.
[8] LIU X D, OSHER S, CHAN T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1994, 115(1):200-212.
[9] DENG X G, ZHANG H X. Developing high-order weighted compact nonlinear schemes[J]. Journal of Computational Physics, 2000, 165(1):22-24.
[10] 李松波. 耗散守恒格式理论[M]. 北京:高等教育出版社, 1997:208-211. LI S B. The theory of dissipative conservation scheme[M]. Beijing:Higher Education Press, 1997:208-211(in Chinese).
[11] LEE T K, ZHONG X L. Spurious numerical oscillations in simulation of supersonic flows using shock-capturing schemes[J]. AIAA Journal, 1999, 37(3):313-319.
[12] BONNHAUS D. A higher order accurate finite element method for viscous compressible flows:AIAA-1999-0780[R].Reston:AIAA, 1999.
[13] ZHONG X L. Leading-edge receptivity to free-stream disturbance waves for hypersonic flow over a parabola[J]. Journal of Fluid Mechanics, 2001, 441(1):315-367.
[14] MA Y, ZHONG X L. Receptivity of a supersonic boundary layer over a flat plate, Part 1:Wave structures and interactions[J]. Journal of Fluid Mechanics, 2003, 488(1):31-78.
[15] MA Y, ZHONG X L. Receptivity of a supersonic boundary layer over a flat plate, Part 2:Receptivity to free-stream sound[J]. Journal of Fluid Mechanics, 2003, 488(1):79-121.
[16] PRAKASH A, PARSONS N, WANG X, et al. High-order shock-fitting methods for direct numerical simulation of hypersonic flow with chemical and thermal nonequilibrium[J]. Journal of Computational Physics, 2011, 230(23):8474-8507.
[17] KOPRIVA D A. Shock-fitted multidomain solution of supersonic flows[J]. Computer Methods in Applied Mechanics and Engineering, 1999, 175(3):383-394.
[18] PACIORRI R, BONFIGLIOLI A. Shock interaction computations on unstructured, two-dimensional grids using a shock-fitting technique[J]. Journal of Computational Physics, 2011, 230(8):3155-3177.
[19] PACIORRI R, BONFIGLIOLI A. A shock-fitting technique for 2D unstructured grids[J]. Computers & Fluids, 2009, 38:715-726.
[20] BONGIGLIOLI A, GROTTADAURES M, PACIORRI R, et al. An unstructured, three-dimensional, shock-fitting solver for hypersonic Flows[J]. Computers & Fluids, 2013, 73:162-174.
[21] MORETTI G. Thirty-six years of shock fitting[J]. Computers & Fluids, 2002, 31:719-723.
[22] FARHAT C, GEUZAINE P. Design and analysis of robust ALE time-integrators for the solution of unsteady flow problems on moving grids[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193:4073-4095.
[23] 刘君, 白晓征, 郭正. 非结构动网格计算方法[M]. 长沙:国防科技大学出版社, 2009:71-77. LIU J, BAI X Z, GUO Z. The computational method of unstructured moving grids[M]. Changsha:National University of Defence Technology Press, 2009:71-77(in Chinese).
[24] 郭正, 刘君, 瞿章华. 非结构动网格在三维可动边界问题中的应用[J]. 力学学报, 2003, 35(2):140-146. GUO Z, LIU J, QU Z H. Dynamic unstructured grid method with applications to 3D unsteady flows involving moving boundarie[J]. Acta Mechanics Sinica, 2003, 35(2):140-146(in Chinese).
[25] 刘君, 白晓征, 张涵信, 等. 关于变形网格"几何守恒律"概念的讨论[J]. 航空计算技术, 2009, 39(4):1-5. LIU J, BAI X Z, ZHANG H X, et al. Discussion about GCL for diforming grids[J]. Aeronautical Computing Technique, 2009, 39(4):1-5(in Chinese).
[26] LIU J, BAI X Z, GUO Z, et al. A new method for transferring flow information among meshes[J]. Computational Fluid Dynamics Journal, 2007, 15(4):509-514.
[27] THOMAS P D, LOMBARD C K. The geometric conservation law-a link between finite-difference and finite-volume methods of flow computation on moving grids:AIAA-1978-1208[R]. Reston:AIAA, 1978.
[28] MAVRIPLIS D J, YANG Z. Construction of the discrete geometric conservation law for high-order time-accurate simulations on dynamic meshes[J]. Journal of Computational Physics, 2006, 213(2):557-573.
[29] BATINA J T. Unsteady Euler airfoil solutions using unstructured dynamic meshes[J]. AIAA Journal, 1990, 28(8):1381-1388.
[30] YAO Y, LI S G, WU Z N. Shock reflection in the presence of an upstream expansion wave and a downstream shock wave[J]. Journal of Fluid Mechanics, 2013, 735:61-90.
[31] CHEN S X. E-H type Mach configuration and its stability[J]. Communications in Mathematical Physics, 2012, 315(3):563-602.
/
〈 | 〉 |