材料工程与机械制造

湿热环境下K-cor夹层复合材料的力学性能

  • 沈裕峰 ,
  • 李勇 ,
  • 王鑫 ,
  • 还大军
展开
  • 南京航空航天大学 材料科学与技术学院, 南京 210016
沈裕峰 男,硕士研究生。主要研究方向:复合材料三维增强技术。Tel:025-84892980,E-mail:shenyf@163.com;

收稿日期: 2015-08-06

  修回日期: 2015-09-14

  网络出版日期: 2015-09-21

基金资助

国家“973”计划(2014CB046501);航空科学基金(2015ZE52049)

Mechanical properties of K-cor sandwich composite under hygrothermal environment

  • SHEN Yufeng ,
  • LI Yong ,
  • WANG Xin ,
  • HUAN Dajun
Expand
  • College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2015-08-06

  Revised date: 2015-09-14

  Online published: 2015-09-21

Supported by

National Basic Research Program of China (2014CB046501); Aeronautical Science Foundation of China (2015ZE52049)

摘要

K-cor夹层结构是应用Z-pin技术增强的一种新型高性能夹层结构,本文研究了Z-pin不同植入密度对K-cor夹层结构试样吸湿特性的影响规律,在此基础上对不同Z-pin植入参数对试样湿热前后三点弯曲性能和压缩性能的影响规律进行了深入研究。研究结果表明:夹层结构中Z-pin的植入能提高试样的尺寸稳定性,且不会对其吸湿率造成明显影响;Z-pin植入密度的增加能明显提高湿热前后试样三点弯曲强度和压缩强度,且具有较高的强度保持率,Z-pin密度为12 mm×12 mm的K-cor夹层结构湿热处理试样的三点弯曲强度比未湿热处理空白试样的要高11.1%,8 mm×8 mm湿热处理K-cor试样的芯部压缩强度比未湿热处理空白夹层结构试样要高17.5%,体现出K-cor夹层结构优异的抗湿热性能;而Z-pin植入角度的减小能明显提高试样湿热处理前后的压缩强度,0°植入K-cor试样湿热处理后的芯部压缩强度与40°植入K-cor试样未湿热处理的基本相同,但植入角度对三点弯曲强度影响较小。

本文引用格式

沈裕峰 , 李勇 , 王鑫 , 还大军 . 湿热环境下K-cor夹层复合材料的力学性能[J]. 航空学报, 2016 , 37(7) : 2303 -2311 . DOI: 10.7527/S1000-6893.2015.0251

Abstract

K-cor sandwich is a new kind of foam sandwich reinforced by Z-pin techniques. The absorption curves of different samples by changing the implanted density of Z-pin are investigated, and the effect of the hydrothermal condition on the three point bending and compressive properties of the samples with changing parameters of Z-pin are also determined. The results indicate that Z-pin improves the dimensional stability of the samples by changing the implanted density in sandwich structure, but it does not affect the moisture absorption rate. The sample which increases the implanted density of Z-pin can significantly improve the three point bending strength and compressive strength under dry and wet conditions, and the samples have a higher strength retention rate. The three point bending strength of K-cor with Z-pin density of 12 mm×12 mm in wet condition is improved by 11.1%, and the compressive strength of K-cor with Z-pin density of 8 mm×8 mm in wet condition is improved by 17.5% compared with blank sandwich structure in dry condition. It shows that K-cor sandwich structure has excellent wet and heat resistance. The samples which reduce implantation angle of Z-pin can significantly increase the compressive strength under dry and wet conditions. The compressive strength of K-cor sample with Z-pin of 0° in wet condition is the same as Z-pin of 40° in dry condition. But this factor has less influence on three point bending strength.

参考文献

[1] SEIBERT H. Applications for PMI foams in aerospaces and wich structures[J]. Reinforced Plastics, 2006, 50(1):44-48.
[2] 李涛, 陈蔚, 成理, 等. 泡沫夹层结构复合材料的应用与发展[J]. 科技创新导报, 2009(14):3-5. LI T, CHEN W, CHENG L, et al. The development and application of foam sandwich structural composites[J]. Science and Technology Innovation Herald, 2009(14):3-5(in Chinese).
[3] ZHENG Y Y, XIAO J, DUAN M F, et al. Experimental study of partially-cured Z-pins reinforced foam core composites:K-Cor sandwich structures[J]. Chinese Journal of Aeronautics, 2014, 27(1):153-159.
[4] 褚奇奕, 肖军, 李勇, 等. 碳纤维增强环氧Z-pin拔脱性能[J]. 航空学报, 2015, 36(4):1312-1319. CHU Q Y, XIAO J, LI Y, et al. Pullout performance of carbon fiber/epoxy Z-pins[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4):1312-1319(in Chinese).
[5] PARTRIDGE I K, CARTI D D R, BONNINGTON T. Advanced polymeric materials:Structure property relationships[M]. Boca Raton:CRC, 2003:55-91.
[6] CASARI P, CARTIE D, DAVIES P. Characterisation of novel K-cor[C]//Sandwich Structures 7:Advancing with Sandwich Structures and Materials. Berlin:Springer, 2005:865-874.
[7] MARASCO A I, CARTI D D R, PARTRIDGE I K, et al. Mechanical properties balance in novel Z-pinned sandwich panels:Out-of-plane properties[J]. Composites Part A:Applied Science and Manufacturing, 2006, 37(2):295-302.
[8] BARAL N, CARTIE D D R, PARTRIDGE I K, et al. Improved impact performance of marine sandwich panels using through-thickness reinforcement:Experimental results[J]. Composites Part B:Engineering, 2010, 41(2):117-123.
[9] DAVIES P, CHOQUEUSE D, BOURBOUZE G. Mi-crotomography to study high-performance sandwich structures[J]. Journal of Sandwich Structures and Materials, 2011, 13(1):7-21.
[10] 郑莹莹. K-cor增强泡沫夹层结构制备与力学性能研究[D]. 南京:南京航空航天大学, 2013:21-53. ZHENG Y Y. Research on preparation process and mechanical properties of K-cor sandwich structure[D].Nanjing:Nanjing University of Aeronautics & Astronautics, 2013:21-53(in Chinese).
[11] PARK Y B, KWEON J H, CHOI J H. Failure characteristics of carbon/BMI-Nomex sandwich joints in various hygrothermal conditions[J]. Composites Part B:Engineering, 2014, 60(1):213-221.
[12] EARL J S, DULIEU-BARTON J M, SHENOI R A. Determination of hygrothermal ageing effects in sandwich construction joints using thermoelastic stress analysis[J]. Composites Science and Technology, 2003, 63(2):211-223.
[13] 董安琪, 段跃新, 肇研, 等. 湿热环境对PMI泡沫夹芯复合材料性能的影响[J]. 复合材料学报, 2012, 29(2):46-52. DONG A Q, DUAN Y X, ZHAO Y, et al. Effects of hydrothemermal condition on properties of poly-methacrylimide(PMI) foam cored sandwich structure[J]. Acta Materiae Compositae Sinica, 2012, 29(2):46-52(in Chinese).
[14] 胡建平, 蔡吉喆, 肇研, 等. 湿热环境对蜂窝夹层复合材料性能的影响[J]. 材料工程, 2010(11):43-47. HU J P, CAI J Z, ZHAO Y, et al. Effects of hygrothermal environment on properties of Nomex sandwich composite[J]. Material Engineering, 2010(11):43-47(in Chinese).
[15] 肇研, 董昊, 胡建平, 等. 湿热循环对Nomex蜂窝/环氧树脂夹层复合材料性能的影响[J]. 材料工程, 2012(6):1-6. ZHAO Y, DONG H, HU J P, et al. Effects of cyclic hygrothermal on properties of Nomax honeycomb/epoxy sandwich[J]. Material Engineering, 2012(6):1-6(in Chinese).
[16] SON H G, PARK Y B, KWEON J H, et al. Fatigue behaviour of metal pin-reinforced composite single-lap joints in a hygrothermal environment[J]. Composite Structures, 2014, 108(1):151-160.
[17] 刘永涛, 杨杰, 黄业青, 等. 泡沫夹层复合材料耐水性能研究进展[J]. 材料导报, 2011, 25(S2):439-443. LIU Y T, YANG J, HUANG Y Q, et al. Review of water durability of foam core sandwich composites[J]. Materials Review, 2011, 25(S2):439-443(in Chinese).
[18] 杨孚标, 肖加余, 曾竟成, 等. 复合材料蜂窝夹心板的低速冲击损伤[C]//第十四届全国复合材料学术会议论文集(上):复合材料-基础、创新、高效. 北京:中国学术期刊电子杂志社, 2006:462-467. YANG F B, XIAO J Y, ZENG J C, et al. The damage in composite sandwich panels subjected to low velocity impact[C]//The 14th National Academic Conference on Composite Meterial (Volume I):Composite Materials-Based, Innovation and Efficient. Beijing:China Academic Journal Electronic Magazine, 2006:462-467(in Chinese).
[19] 李勇, 肖军, 谭永刚, 等. X-cor夹层结构压缩性能研究[J]. 航空学报, 2009, 30(3):557-561. LI Y, XIAO J, TAN Y G, et al. Compression property analysis of X-cor sandwich composites[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(3):557-561(in Chinese).
[20] 段沐枫, 肖军, 李勇, 等. K-cor夹层结构的平压性能[J]. 复合材料学报, 2014, 31(5):1284-1291. DUAN M F, XIAO J, LI Y, et al. On compression performance of K-cor reinforced foam sandwich structure[J]. Acta Materiae Compositae Sinica, 2014, 31(5):1284-1291(in Chinese).
[21] 吴扬, 董浩, 段跃新, 等. 湿热循环对PMI泡沫/3218-1环氧树脂夹层结构性能影响的研究[J]. 玻璃钢/复合材料, 2012(1):29-33. WU Y, DONG H, DUAN Y X, et al. Effects of hygrothermal cycling on properties of polymethacrylimide(PMI) foam/3218-1 epoxy sandwich structure[J]. Fiber Reinforced Plastics/Composites, 2012(1):29-33(in Chinese).

文章导航

/