纳秒脉冲等离子体分离流控制频率优化及涡运动过程分析
收稿日期: 2015-06-19
修回日期: 2015-09-08
网络出版日期: 2015-09-16
基金资助
国家自然科学基金(11532007);中央高校基本科研业务费专项资金(NP2014605);江苏省研究生培养创新工程(KYLX_0216);南京航空航天大学基本科研业务费资助项目(NS2013013);南京航空航天大学研究生创新基地(实验室)开放基金(kfjj201401)
Frequency optimization and vortex dynamic process analysis of separated flow control by nanosecond pulsed plasma discharge
Received date: 2015-06-19
Revised date: 2015-09-08
Online published: 2015-09-16
Supported by
National Natural Science Foundation of China (11532007);hte Fundamental Research Funds for the Central Universities (NP2014605);Funding of Jiangsu Innovation Program for Graduate Education(KYLX_0216);NUAA Fundamental Research Funds (NS2013013);Foundation of Graduate Innovation Center in NUAA (kfjj201401)
将纳秒脉冲驱动的介质阻挡放电等离子体激励器应用到NASA SC(2)-0712翼型上,在迎角分别为15°和20°时,开展了在不同雷诺数下的分离流动控制研究。通过模型表面静压测量,得到了不同激励频率下的分离流动控制效果。对翼型表面压力进行分布积分,得到了在不同雷诺数和激励频率下的升力系数,表明分离流的控制效果有一个较宽的激励频率范围,只要激励频率落在相应的频带范围内,均能实现有效的分离抑制。流动显示结果表明,分离流的控制在瞬时表现为放电后可形成大尺度旋涡拟序结构。旋涡的周期性产生、运动和演化造成了分离剪切流动的动态变化过程,从而促进了高/低速气流的动态掺混。
杜海 , 史志伟 , 程克明 , 李甘牛 , 宋天威 , 李铮 . 纳秒脉冲等离子体分离流控制频率优化及涡运动过程分析[J]. 航空学报, 2016 , 37(7) : 2102 -2111 . DOI: 10.7527/S1000-6893.2015.0246
The nanosecond pulsed plasma discharge actuator is used on a NASA SC (2)-0712 airfoil. At the angles of attack of 15° and 20°, the flow control efficacy of the actuators is tested at a series of Reynolds number conditions. The static pressure test result shows that the actuator has different control effect at different forcing frequencies. By calculating the lift coefficient, the relations between the forcing frequency and lift are determined, which shows that the broadband bandwidth of flow reattachment makes the flow control more practicable. The flow visualization test shows that the pulse discharge promotes the formation of large scale vortexes. The coherent structures of the vortex couples are periodically produced, move and evolution. This process brings the separated shear layer dynamic evolution, and thus promotes a dynamic mixing of high/low speed airflow to happen in the separated flow region.
Key words: nanosecond pulses; plasma; separated flow; flow control; vortex; coherent structures
[1] WU J Z, LU X Y, DENNY A G, et al. Post-stall flow control on an airfoil by local unsteady forcing[J]. Journal of Fluid Mechanics, 1998, 371(1):21-58.
[2] GREENBLATT D, WYGNANSKI I J. The control of flow separation by priodic excitation[J]. Progress in Aerospace Sciences, 2000, 36(7):487-545.
[3] 吴云, 李应红. 等离子体流动控制研究进展与展望[J]. 航空学报, 2015, 36(2):381-405. WU Y, LI Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):381-405(in Chinese).
[4] LI Y H, WU Y, SONG H M, et al. Plasma flow control[M]. Rijeka, Croatia:InTech, 2011:21-54.
[5] WANG J J, CHOI K S, FENG L H, et al. Recent developments in DBD plasma flow control[J]. Progress in Aerospace Sciences, 2013, 62(4):52-78.
[6] BENARD N, MOREAU E. Electrical and mechanical characteristics of surface AC dielectric barrier discharge plasma actuators applied to airflow control[J]. Experiments in Fluids, 2014, 55(11):1-43.
[7] 杜海, 史志伟, 倪芳原, 等. 基于等离子体激励的飞翼布局飞行器气动力矩控制研究[J]. 航空学报, 2013, 34(9):2038-2046. DU H, SHI Z W, NI F Y, et al. Aerodynamic moment control of flying wing vehicle using plasma actuators[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9):2038-2046(in Chinese).
[8] 龙玥霄, 李华星, 孟宣市. AC和NS等离子体激励对细长前体分离涡流场的控制[J]. 航空工程进展, 2014, 5(3):358-363. LONG Y X, LI H X, MENG X S. Flow control over a slender forebody using AC and NS-DBD plasma actuators[J]. Advances in Aeronautical Science and Engineering, 2014, 5(3):358-363(in Chinese).
[9] 何伟, 牛中国, 潘波, 等. 等离子抑制翼尖涡实验研究[J]. 工程力学, 2013, 30(5):277-281. HE W, NIU Z G, PAN B, et al. Study on experiments for suppressing wingtip vortices with plasma[J]. Engineering Mechanics, 2013, 30(5):277-281(in Chinese).
[10] 王万波, 章荣平, 黄宗波, 等. 等离子体激励用于两段翼型增升的试验研究[J]. 空气动力学学报, 2012, 31(1):64-68. WANG W B, ZHANG R P, HUANG Z B, et al. Test research of two-element airfoil enhancement by plasma actuator[J]. Acta Aerodynamica Sinica, 2012, 31(1):64-68(in Chinese).
[11] 车学科, 聂万胜, 侯志勇, 等. 地面试验模拟高空等离子体流动控制效果[J]. 航空学报, 2015, 36(2):441-448. CHE X K, NIE W S, HOU Z Y, et al. High altitude plasma flow control simulation through ground experiment[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):441-448(in Chinese).
[12] STARIKOVSKⅡ A Y, NIKIPELOV A A, NUDNOVA M M, et al. DSDBD plasma actuator with nanosecond pulse-periodic discharge[J]. Plasma Sources Science and Technology, 2009, 18(34):1-17.
[13] ROUPASSOV D V, NIKIPELOV A A, NUDNOVA M M, et al. Flow separation control by plasma actuator with nanosecond pulsed-periodic discharge[J]. AIAA Journal, 2009, 47(1):168-185.
[14] LITTLE J, TAKASHIMA K, NISHIHARA M, et al. Separation control with nanosecond-pulse-driven dielectric barrier discharge plasma actuators[J]. AIAA Journal, 2012, 50(2):350-365.
[15] RETHMEL C, LITTLE J, TAKASHIMA K, et al. Flow separation control over an airfoil with nanosecond pulse driven DBD plasma actuators[C]//Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2011.
[16] KATO K, BREITSAMTER C, OBI S. Flow separation control over a G 387 airfoil by nanosecond pulse-periodic discharge[J]. Experiments in Fluids, 2014, 55(8):1-19.
[17] ZHU Y F, WU Y, WEI C, et al. Modelling of plasma aerodynamic actuation driven by nanosecond SDBD discharge[J]. Journal of Physics D:Applied Physics, 2013, 46(35):355205-1-9.
[18] ZHAO Z J, LI J M, ZHENG J G, et al. Study of shock wave and induced flow dynamics by pulsed nanosecond DBD plasma actuators:AIAA-2015-0402[R]. Reston:AIAA, 2015.
[19] ZHAO G Y, LI Y H, LIANG H, et al. Flow separation control on swept wing with nanosecond pulse driven DBD plasma actuators[J]. Chinese Journal of Aeronautics, 2015, 28(2):368-376.
[20] CORREALE G, POPOV I, RAKITIN A, et al. Flow separation control on airfoil with pulsed nanosecond discharge actuator[C]//Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2011.
[21] 白亚磊. 机翼大攻角分离流控制技术研究[D]. 南京:南京航空航天大学, 2011:52-53. BAI Y L, Studies of control techniques about separation flow of wing at high angle of attack[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2011:52-53(in Chinese).
[22] 童秉纲, 张炳暄, 崔尔杰. 非定常流与涡运动[M]. 北京:国防工业出版社, 1993:320-322. TONG B G, ZHANG B X, CUI E J.Unsteady flow and vortex motion[M]. Beijing:National Defense Industry Press, 1993:320-322(in Chinese).
[23] YARUSEVYCH S, KAWALL J G, SULLIVAN P E. Separated-shear-layer development on an airfoil at low Reynolds numbers[J]. AIAA Journal, 2008, 46(12):3060-3069.
[24] YARUSEVYCH S, SULLIVAN P E, KAWALL J G. On vortex shedding from an airfoil in low-Renolds-number flows[J]. Journal of Fluid Mechanics, 2009, 632(10):245-271.
[25] HSIAO F B, LIU C F, SHYU J Y. Control of wall-separated flow by internal acoustic excitation[J]. AIAA Journal, 1990, 28(8):1440-1446.
[26] HSIAO F B, SHYU R N, CHANG R C. High angle-of-attack airfoil performance improvement by internal acoustic excitation[J]. AIAA Journal, 1994, 32(3):655-657.
[27] BUCHMAN N A, ATKINSON C, SORIA J. Influence of ZNMF jet flow control on the spatio-temporal flow structure over a NACA-0015 airfoil[J]. Experiments in Fluids, 2013, 54(54):1-14.
[28] 赵光银, 李应红, 梁华, 等. 纳秒脉冲表面介质阻挡等离子体激励唯象学仿真[J]. 物理学报, 2015, 64(1):015101-1-11. ZHAO G Y, LI Y H, LIANG H, et al. Phenomenological modeling of nanosecond pulsed surface dielectric barrier discharge plasma actuation for flow control[J]. Acta Physica Sinica, 2015, 64(1):015101-1-11(in Chinese).
/
〈 | 〉 |