材料工程与机械制造

基于拐点检测的椭圆弧叶型前后缘评定算法

  • 姚昀 ,
  • 毛华杰 ,
  • 朱大虎
展开
  • 1. 武汉理工大学 材料科学与工程学院, 武汉 430070;
    2. 武汉理工大学 现代汽车零部件技术湖北省重点实验室, 武汉 430070;
    3. 武汉理工大学 汽车工程学院, 武汉 430070
姚昀,男,硕士研究生。主要研究方向:机械制造。 E-mail:1017011075@qq.com;毛华杰,男,硕士,教授,硕士生导师。主要研究方向:材料加工工程。Tel:027-51111666 E-mail:maohj@whut.edu.cn;朱大虎,男,博士,讲师。主要研究方向:机械制造。 E-mail:dhzhu@whut.edu.cn

收稿日期: 2015-06-19

  修回日期: 2015-08-12

  网络出版日期: 2015-09-11

基金资助

教育部创新团队发展计划项目(IRT13087)

An evaluation algorithm of elliptic arc blade leading and trailing edges based on inflexion detection

  • YAO Yun ,
  • MAO Huajie ,
  • ZHU Dahu
Expand
  • 1. School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China;
    2. Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China;
    3. School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China

Received date: 2015-06-19

  Revised date: 2015-08-12

  Online published: 2015-09-11

Supported by

Innovative Research Team Development Program of Ministry of Education of China (IRT13087)

摘要

叶片前后缘的形位对叶片气动性能有着显著影响,且其分割结果也严重影响特征参数的精密计算。现有的叶片前后缘分割算法大多基于拓延算法的实现与改进,但是拓延算法本身尚不能自适应叶型截面尺寸来分割点云,而后续的改进算法在轮廓线误差控制上仍有待加强。针对叶片截面线前后缘的点云精确分割问题,参照椭圆弧叶型的造型设计特点,提出了基于拐点检测的前后缘评定算法。通过对截面线点云旋转、截取、顺时针排序以及拐点检测处理,实现了在高精度测量条件下对叶片前后缘的精确分割。最后设计了对比实验,验证了本文算法可以定性地分割叶片前后缘,并在线轮廓误差上保持了较低水平;论证了在逐点拓延椭圆拟合过程中,从凹性点即开始影响线轮廓误差。

本文引用格式

姚昀 , 毛华杰 , 朱大虎 . 基于拐点检测的椭圆弧叶型前后缘评定算法[J]. 航空学报, 2016 , 37(5) : 1705 -1712 . DOI: 10.7527/S1000-6893.2015.0247

Abstract

The shape and position of blade leading and trailing edge have a significant impact on blade aerodynamic performance, and the result of segmentation seriously affects the precision calculation of characteristic parameters. Most existing segmentation algorithms of finding the location of leading and trailing edges are based on implementation and improvement of the extension algorithm; however, the extension algorithm could not adapt itself to the blade section size. What's more, subsequent improved algorithms on the contour error control remain to be strengthened. Aimed at segmentation problem of leading and trailing edges of the blade section line, an evaluation algorithm of leading and trailing edges based on inflexion detection is first proposed, with reference to the modelling of elliptic arc blade design characteristics. Then accurate segmentation of the blade leading and trailing edges is implemented under the condition of high-precision measurement, via point-clouds processing of rotation, interception, sorting and inflection point detection. And finally, a contrast experiment is designed to verify that this approach could split the blade leading and trailing edges qualitatively, keeping the contour error on a lower level, and demonstrate that the concavity points begin to influence line contour error in the process of ellipse fitting by the extension algorithm.

参考文献

[1] 蔺小军, 单晨伟, 王增强, 等. 航空发动机叶片型面三坐标测量机测量技术[J]. 计算机集成制造系统, 2012, 18(1):125-131. LIN X J, SHAN C W, WANG Z Q, et al. CMM measuring data processing algorithms for blades about the contour measurement[J]. Computer Integrated Manufacturing Systems, 2012, 18(1):125-131(in Chinese).
[2] HSU T H, LAI J Y, UENG W D. On the development of airfoil section inspection and analysis technique[J]. The International Journal of Advanced Manufacturing Technology, 2006, 30(1-2):129-140.
[3] 白晓亮, 张树生. 涡轮叶片叶面B-spline曲面层次化拟合方法[J]. 航空学报, 2009, 30(10):1978-1984. BAI X L, ZHANG S S. Hierarchical B-spline surface fitting of turbine blades[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10):1978-1984(in Chinese).
[4] WU X M, LI G X. A new surface reconstruction method in reverse engineering[C]//2009 Fifth International Conference on Natural Computation. Piscataway, NJ:IEEE Press, 2009:334-338.
[5] LI W L, XIE H, LI Q D, et al. Section curve reconstruction and mean-camber curve extraction of a point-sampled blade surface[J]. PloS One, 2014, 9(12):e115471.
[6] LI W L, ZHOU L P, YAN S J. A case study of blade inspection based on optical canning method[J]. International Journal of Production Research, 2015, 53(7):2165-2178.
[7] MOHANGHEGH K, SADEGHI M H, ABDULLAH A. Reverse engineering of turbine blades based on design intent[J]. The International Journal of Advanced Manufacturing Technology, 2007, 32(9):1009-1020.
[8] 张力宁, 张定华. 叶片前缘高精度重建方法研究[J]. 航空动力学报, 2006, 21(4):722-726. ZHANG L N, ZHANG D H. High precision reconstruction of blade leading edge[J]. Journal of Aerospace Power, 2006, 21(4):722-726(in Chinese).
[9] 陈志强, 张定华, 金炎芳, 等. 基于测量数据的叶片截面特征参数提取[J]. 科学技术与工程, 2007, 7(9):1972-1975. CHEN Z Q, ZHANG D H, JIN Y F, et al. Cross-section feature parameter extraction of blade based on measurement data[J]. Science Technology and Engineering, 2007, 7(9):1972-1975(in Chinese).
[10] CHEN L, LI B, JIANG Z D, et al. Parameter extraction of featured section in turbine blade inspection[C]//2010 Proceeding of the 2010 IEEE International Conference on Automation and Logistics. Piscataway, NJ:IEEE Press, 2010:16-20.
[11] 席平, 孙肖霞. 基于CAD模型的涡轮叶片误差检查系统[J]. 北京航空航天大学学报, 2008, 34(10):1159-1162. XI P, SUN X X. Error analysis system of turbine blade on CAD model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(10):1159-1162(in Chinese).
[12] 蔺小军, 陈悦, 王志伟, 等. 面向自适应加工的精锻叶片前后缘模型重构[J]. 航空学报, 2015, 36(5):1695-1703. LIN X J, CHEN Y, WANG Z W, et al. Model restructuring about leading edge and tailing edge of precision for ging blade for adaptive machining[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1695-1703.
[13] JOHN J C. 机器人学导论[M]. 北京:机械工业出版社, 2006:55-99. JOHN J C. Introduction to robotics:mechanics and control[M]. Beijing:China Machine Press, 2006:55-99(in Chinese).
[14] 王志强, 肖立瑾, 洪嘉振. 多边形的简单性、方向及内外点的判别算法[J]. 计算机学报, 1998, 21(2):183-187. WANG Z Q, XIAO L J, HONG J Z. Simplicity, orientation, and inclusion test algorithms for polygons[J]. Chinese Journal of Computers, 1998, 21(2):183-187(in Chinese).
[15] 孟军强. 基于NURBS的涡轮叶片造型技术研究[D]. 南京:南京航空航天大学, 2007:15-23. MENG J Q. Investigation of turbine blade modeling technique based on NURBS[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2007:15-23(in Chinese).
[16] 邱名, 周正贵, 刘龙龙, 等. 超声压气机叶型设计方法[J]. 航空学报, 2014, 35(4):975-985. QIU M, ZHOU Z G, LIU L L, et al. Supersonic compressor blade profile design method[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(4):975-985(in Chinese).
[17] FITZGIBBON A W, PILU M, FISHER R B. Direct least squares fitting of ellipses[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 21(5):476-480.
[18] HALIR R, FLUSSER J. Numerically stable direct least squares fitting of ellipses[C]//Proceedings of the 6th International Conference in Central Europe on Computer Graphics, Visualization and Interactive Digital Media. Plzen:WSCG Press, 1998:125-132.
[19] HE Y F, DAVIDSON J K, SHAN J J. Tolerance-maps for line-profiles constructed from boolean intersection of T-map primitives for arc-segments[J]. Journal of Zhejiang University-Science A, 2015, 16(5):341-352.
[20] 戴能云. 复杂形状轮廓的几何形状误差评定方法研究[D]. 长沙:中南大学, 2010:24-36. DAI N Y. Geometric error evaluation method research on complex shape contours[D]. Changsha:Central South University, 2010:24-36(in Chinese).
[21] 彭凯, 刘书桂, 张雪飞, 等. 基于椭圆线轮廓度误差评定的椭圆提取方法[J]. 光电工程, 2006, 33(12):101-104. PENG K, LIU S G, ZHANG X F, et al. Extracting ellipses based on evaluation for elliptical profile error[J]. Opto-Electronic Engineering, 2006, 33(12):101-104(in Chinese).

文章导航

/