材料工程与机械制造

约束阻尼型镗杆的优化及减振性能

  • 刘洋 ,
  • 刘战强 ,
  • 宋清华
展开
  • 山东大学 机械工程学院 高效洁净机械制造教育部重点实验室, 济南 250061
刘洋 男,硕士研究生。主要研究方向:减振刀杆。E-mail:sduliuyang11@gmail.com;宋清华 男,博士,副教授。主要研究方向:高速切削振动及控制。E-mail:ssinghua@sdu.edu.cn

收稿日期: 2015-07-17

  修回日期: 2015-08-28

  网络出版日期: 2015-09-06

基金资助

国家自然科学基金(51425503,51375272,U1201245);高档数控机床与基础制造装备科技重大专项(2015ZX04005008);泰山学者专项(TS20130922)

Optimization and damping performance of constrained damping boring bar

  • LIU Yang ,
  • LIU Zhanqiang ,
  • SONG Qinghua
Expand
  • Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China

Received date: 2015-07-17

  Revised date: 2015-08-28

  Online published: 2015-09-06

Supported by

National Natural Science Foundation of China (51425503, 51375272, U1201245);Major Science and Technology Program of High-end CNC Machine Tools and Basic Manufacturing Equipment (2015ZX04005008);Taishan Scholar Special (TS20130922)

摘要

孔加工过程中镗杆的切削颤振影响着表面加工质量和加工精度,约束阻尼型镗杆可有效抑制这种切削振动,但其作用机理未被完全研究清楚,导致其抑制振动的效果一般。对约束阻尼型镗杆的结构优化、材料优选及减振性能进行了理论和实验研究。首先,根据Kelvin-Voigt粘弹性力学模型理论建立了镗杆的动力学模型,研究证实增大镗杆的静刚度和结构损耗因子能提高其减振性能从而提高孔加工质量;其次,基于建立的约束阻尼型镗杆静刚度和结构损耗因子理论公式,对其进行结构优化、材料优选。结果显示:存在一个最佳尺寸范围可减小镗杆在主要工作频域段上的振动,同时所选用的阻尼层应具有较小的弹性模量和较大的材料损耗因子,约束层材料应具有较大的弹性模量;最后,设计制造4种不同材料的约束阻尼型镗杆,通过模态实验获得静刚度、结构损耗因子,并与理论计算结果进行对比分析,同时研究切削过程中约束阻尼型镗杆的材料及切削参数对减振性能的影响。结果显示:约束阻尼型镗杆能有效减小径向振动以提高加工质量,不同材料的约束阻尼型镗杆在切削过程中径向振动差别较大,优化后的钢-PMMA-硬质合金镗杆在不同切深及转速下的径向振动加速度较小且更加稳定。

本文引用格式

刘洋 , 刘战强 , 宋清华 . 约束阻尼型镗杆的优化及减振性能[J]. 航空学报, 2016 , 37(6) : 1992 -2002 . DOI: 10.7527/S1000-6893.2015.0241

Abstract

The constrained damping boring bar can effectively reduce the cutting chatter affecting the surface quality and accuracy in hole machining, but the effect is not significant because the mechanism has not been fully found out. The theoretical and experimental research of the structure optimization, optimal material selection and vibration damping characteristic of the constrained damping boring bar is finished in this paper. Firstly, the dynamics model of the constrained damping boring bar is established through Kelvin-Voigt's viscoelastic mechanics model theory, and it is proved that the increase of static stiffness and loss factor of the boring bar can enhance the vibration damping performance to improve the quality of machining. Secondly, structure optimization and optimal material selection are completed based on the static stiffness and loss factor theory formula, and the result shows that there is an optimal size range that can reduce the vibration on the main working frequency domain, then it is shown that the elastic modulus of damping layer should be reduced while the elastic modulus of constraining layer and the material loss factor of damping layer should be increased. Finally, four constrained damping boring bars with different materials are designed and manufactured, and the modal experimental results of the static stiffness and loss factor have little difference with the theoretical calculation results. Further study of the influence of material and cutting parameters on the vibration damping performance in machining shows that constrained damping boring bars can effectively reduce the radial vibration to improve the surface quality. The radial vibration of constrained damping boring bars with different materials has great differences in cutting process, and the radial vibration acceleration of the optimized steel-PMMA-carbide boring bar is smaller and more stable at different cutting depths and spindle speeds.

参考文献

[1] 刘立佳, 刘献礼, 许成阳. 减振镗杆振动控制研究综述[J]. 哈尔滨理工大学学报, 2014, 19(2):12-18. LIU L J, LIU X L, XU C Y. Vibration control review of damping boring bar[J]. Journal of Harbin University of Science and Technology, 2014, 19(2):12-18(in Chinese).
[2] 王珉, 区炳显, 昝涛, 等. 镗杆颤振控制技术发展综述[J]. 北京工业大学学报, 2011, 37(8):1143-1147. WANG M, OU B X, ZAN T, et al. Summary of boring bar chatter control technology[J]. Journal of Beijing University of Technology, 2011, 37(8):1143-1147(in Chinese).
[3] AKESSON H, SMIMOVA T, CLAESSON I. On the development of a simple and robust active control system for boring bar vibration in industry[J]. International Journal of Acoustics and Vibration, 2007, 12(4):139-152.
[4] 刘鹏. 压电智能镗杆振动主动控制的理论与实验研究[D]. 长春:吉林大学, 2006:22-35. LIU P. Theoretical and experimental study of active vibration control of intelligent piezoelectric boring bar[D]. Changchun:Jilin University, 2006:22-35(in Chinese).
[5] HAHN R S. Design of Lanchester damper for elimination of metal-cutting chatter[J]. Transctions of ASME, 1951, 73(3):201-213.
[6] EMA S, MARUI E. Suppression of chatter vibration of boring tools using impact dampers[J]. International Journal of Machine Tools and Manufacture, 2000, 40(8):1141-1156.
[7] HWANG H Y, KIM J K. Design and manufacture of a carbon fiber epoxy rotating boring bar[J]. Composite Structures, 2003, 60(1):115-124.
[8] SOOVERE J, DRAKE M L. Aerospace structures technology damping design guide. Volume 1. Technology review[R]. Burbank:Lockheed-California Co Burbank, 1985.
[9] 秦柏. 阻尼动力减振镗杆动态特性仿真与优化设计研究[D]. 哈尔滨:哈尔滨理工大学, 2009:14-25. QIN B. Dynamic characteristics analysis and optimization design of damping boring bar[D]. Harbin:Harbin University of Science and Technology, 2009:14-25(in Chinese).
[10] 杨加明, 张义长, 吴丽娟. 多层黏弹性复合材料结构阻尼性能优化设计[J]. 航空学报, 2011, 32(2):265-270. YANG J M, ZHANG Y C, WU L J. Multilayered viscoelastic damping properties of composite structural optimization design[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(2):265-270(in Chinese).
[11] RUBIO L, LOYA J A, MIGUELEZ M H. Optimization of passive vibration absorbers to reduce chatter in boring[J]. Mechanical Systems and Signal Processing, 2013, 41(1):691-704.
[12] ZHANG S H, CHEN H L. A study on the damping characteristics of laminated composites with integral viscoelastic layers[J]. Composite Structures, 2006, 74(1):63-69.
[13] QI L F, DANIEL L, CORNEL M N. Anti-vibration engineering in internal turning using a carbon nanocomposite damping coating produced by PECVD Process[J]. Journal of Material Engineering and Performance, 2014, 23(2):506-517.
[14] 谭亮红, 陈红, 罗仡科. 阻尼结构对复合结构阻尼性能的影响[J]. 橡胶工业, 2014, 61(2):84-88. TAN L H, CHEN H, LUO Y K. Impact factors of damping structural to damping properties of composite structures[J]. Rubber Industry, 2014, 61(2):84-88(in Chinese).
[15] 夏峰, 刘战强, 宋清华. 约束阻尼结构减振镗杆[J]. 航空学报, 2014, 35(9):2652-2659. XIA F, LIU Z Q, SONG Q H. Boring bar with constrained damping[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9):2652-2659(in Chinese).
[16] UR-RASHID M. Characterization of dynamic elastic modulus and damping property of CNx coating material by experimental modal analysis and finite element approach[D]. Stockholm:KTH Royal Institute of Technology, 2012:24-33.
[17] RIVIN E I, KANG H. Enhancement of dynamic stability of cantilever tooling structures[J]. International Journal of Machine Tools and Manufacture, 1992, 32(4):539-561.
[18] MARYNOWSKI K, KAPITANIAK T. Kelvin-Voigt versus Bürgers internal damping in modeling of axially moving viscoelastic web[J]. International Journal of Non-Linear Mechanics, 2002, 37(7):1147-1161.
[19] KANASE S S, PATIL J S, JADHAV S M. Improvement of Ra value of boring operation using passive damper[J]. The International Journal of Engineering and Science, 2013, 2(7):103-108.
[20] 王军, 吴凤和. 层状复合结构镗刀杆设计与性能研究[J]. 中国机械工程, 2013, 24(6):711-715. WANG J, WU F H. Design and research of composite layered boring bar[J]. China Mechanical Engineering, 2013, 24(6):711-715(in Chinese).
[21] 何将三. 层复合阻尼镗杆的动力学分析[J]. 中国有色金属学报, 1995, 5(3):144-148. HE J S. Dynamics analysis of composite damping boring bar[J]. Chinese Journal of Nonferrous Metals, 1995, 5(3):144-148(in Chinese).
[22] BALL III G L, SALYER I O. Development of a viscoelastic composition having superior vibration-damping capability[J]. The Journal of the Acoustical Society of America, 1966, 39(4):663-673.
[23] DAGHINI L, ARCHENTI A, NICOLESCU C M. Design, implementation and analysis of composite material dampers for turning operations[J]. World Academy of Science, Engineering and Technology, 2009, 53(4):613-620.
[24] 杨昆, 于英华. 泡沫铝/环氧树脂复合材料阻尼性能的研究[J]. 热加工工艺, 2013, 42(16):110-112. YANG K, YU Y H. Research on properties of aluminum foam/epoxy composite damping material[J]. Hot Working Technology, 2013, 42(16):110-112(in Chinese).
[25] FU Q, LORITE G S, RASHID M U. Suppressing tool chatter with novel multi-layered nanostructures of carbon based composite coatings[J]. Journal of Materials Processing Technology, 2015, 223(15):292-298.

文章导航

/