固体力学与飞行器总体设计

玻璃纤维增强铝锂合金层板单峰过载疲劳寿命性能对比研究

  • 孟维迎 ,
  • 谢里阳 ,
  • 刘建中 ,
  • 白鑫 ,
  • 佟安时
展开
  • 1. 东北大学 机械工程与自动化学院, 沈阳 110819;
    2. 中航工业北京航空材料研究院, 北京 100095
孟维迎,男,博士研究生。主要研究方向:纤维金属层板疲劳寿命性能。Tel:024-83678622 E-mail:mengweiying025@163.com;谢里阳,男,博士,教授,博士生导师。主要研究方向:机械疲劳强度与可靠性。Tel:024-83673915 E-mail:lyxie@me.neu.edu.cn

收稿日期: 2015-05-04

  修回日期: 2015-08-03

  网络出版日期: 2015-09-02

基金资助

国家自然科学基金(51175072);国家自然科学基金重点项目(51335003)

Contrast study on fatigue life performance of glass fiber reinforced Al-Li alloy laminates under unimodal overload

  • MENG Weiying ,
  • XIE Liyang ,
  • LIU Jianzhong ,
  • BAI Xin ,
  • TONG Anshi
Expand
  • 1. College of Mechanical Engineering & Automation, Northeastern University, Shenyang 110819, China;
    2. AVIC Beijing Institute of Aeronautical Materials, Beijing 100095, China

Received date: 2015-05-04

  Revised date: 2015-08-03

  Online published: 2015-09-02

Supported by

National Natural Science Foundation of China (51175072);Major Program of National Natural Science Foundation of China (51335003)

摘要

为了研究铝锂合金、纤维金属层板(玻璃纤维增强铝锂合金2/1层板及3/2层板)材料不同加载下的疲劳寿命性能特点,对每种材料进行疲劳寿命试验。通过对每种材料试样施加不同循环特征的循环应力(恒幅循环应力(应力比R=0.06)、单峰拉伸过载、单峰压缩过载),共获得了9种应力-寿命试验数据。使用样本信息聚集原理,拟合出了各材料的P-S-N曲线。通过比较相同材料不同加载方式及相同加载方式不同材料下S-N曲线的差异,结果表明:拉伸过载下3种材料均表现出过载迟滞效应;压缩过载下合金材料表现出加速破坏效应,层板材料表现出一定的延迟效应;不同结构层板之间疲劳性能的优劣与其所受远程应力的大小有一定关系。

本文引用格式

孟维迎 , 谢里阳 , 刘建中 , 白鑫 , 佟安时 . 玻璃纤维增强铝锂合金层板单峰过载疲劳寿命性能对比研究[J]. 航空学报, 2016 , 37(5) : 1536 -1543 . DOI: 10.7527/S1000-6893.2015.0219

Abstract

In order to study on fatigue life performance of the Al-Li alloy and fiber metal laminates (2/1 laminates and 3/2 laminates of glass fiber reinforced Al-Li alloy) under different loading modes, these materials are subjected to fatigue life test. Each type of the materials is applied to cyclic stress, which has different cycle characteristics (constant amplitude with the stress ratio 0.06, unimodal tensile overload and unimodal compressive overload). Nine kinds of test data on stress life are obtained and P-S-N curve of each material is fitted using the principle of sample polymerization. In addition, the differences of the S-N curve with the same material in different loading modes and different materials in the same loading mode are compared with each other. The results show that all of the three kinds of materials show the effect of overload retardation under tensile overload, Al-Li alloy material exhibits accelerated destruction effect and laminate materials exhibit a delayed effect under compressive overload. The pros and cons of fatigue performance between different structural laminates have a relationship with remote stress.

参考文献

[1] 吴学仁, 郭亚军. 纤维金属层板疲劳寿命预测的研究进展[J]. 力学进展, 1999, 29(3):304-316. WU X R, GUO Y J. Development of methodology for predicting fatigue life of fiber reinforced metal laminates[J]. Advances in Mechanics, 1999, 29(3):304-316(in Chinese).
[2] HOMAN J J. Fatigue initiation in fiber metal laminates[J]. International Journal of Fatigue, 2006, 28(4):366-374.
[3] CHANG P Y, YEH P C, YANG J M. Fatigue crack initiation in hybrid boron/glass/aluminum fiber metal laminates[J]. Materials Science and Engineering:A, 2008, 496(1-2):273-280.
[4] FRIZZELL R M, MCCARTHY C T, MCCARTHY M A. An experimental investigation into the progression of damage in pin-loaded fiber metal lamintes[J]. Composites Part B:Engineering, 2008, 39(6):907-925.
[5] GUMMINK J W, VLOT A, DE VRIES T J, et al. GLARE technology development 1997-2000[J]. Applied Composite Materials, 2002, 9(4):201-219.
[6] VERMEEREN C A J R, BEUMLER T, DE KANTER J L C G, et al. GLARE design aspects and philosophies[J]. Applied Composite Materials, 2003, 10(4-5):257-276.
[7] SINKE J. Development of fiber metal laminates:Concurrent multi-scale modeling and testing[J]. Material Science, 2006, 41(20):6777-6788.
[8] MARISSEN R. Fatigue crack growth in ARALL:A hybrid aluminium-aramid composite material crack growth mechanisms and quantitative predictions of the crack growth rates[D]. Delft:Delft University of Technology, 1988:12-13.
[9] HYOUNGSEOCK S. Damage tolerance and durability of GLARE laminates[D]. Los Angeles, CA:University of California Los Angeles, 2008:11-13.
[10] YEH P C. Static and dynamic behavior of high modulus hybrid boron/glass/aluminum fiber metal laminates[D]. Los Angeles, CA:University of California Los Angeles, 2011:28-37.
[11] WU G C. Mechanical behavior damage tolerance and durability of fiber metal laminates for aircraft structures[D]. Los Angeles, CA:University of California Los Angeles, 2005:17-19.
[12] 郭亚军. 纤维金属层板的疲劳损伤与寿命预测[D]. 北京:北京航空材料研究院, 1997:10-12. GUO Y J. Fatigue damage and life prediction of fiber reinforced metal laminates[D]. Beijing:Beijing Institute of Aeronautical Materials, 1997:10-12(in Chinese).
[13] 郭亚军, 吴学仁. 纤维金属层板疲劳裂纹扩展速率与寿命预测的唯象模型[J]. 航空学报, 1998, 19(3):275-282. GUO Y J, WU X R. Phenomenological model for predicting fatigue crack growth in fiber reinforced metal laminates[J]. Acta Aeronautica et Astronautica Sinica, 1998, 19(3):275-282(in Chinese).
[14] 陈琪, 关志东, 黎增山. GLARE层板性能研究进展[J]. 科技导报, 2013, 31(7):50-56. CHEN Q, GUAN Z D, LI Z S. Review of GLARE technology[J]. Technology Review, 2013, 31(7):50-56(in Chinese).
[15] ALDERLIESTEN R C, HOMAN J J. Fatigue and damage tolerance issues of GLARE in aircraft structures[J]. International Journal of Fatigue, 2006, 28(10):1116-1123.
[16] SHIM D J, ALDERLIESTEN R C, SPEARING S M, et al. Fatigue crack growth prediction in GLARE hybrid laminates[J]. Composites Science and Technology, 2003, 63(12):1759-1767.
[17] WU G C, YANG J M. The mechanical behavior of GLARE laminates for aircraft structures[J]. Failure in Structural Materials, 2005(1):72-79.
[18] 中国航空工业总公司. 金属材料轴向加载疲劳试验方法:HB5287-1996[S]. 北京:中国航空工业总公司, 1996:1-8. Aviation Industry Corporation of China. Test method for axial loading fatigue of metallic materials:HB5287-1996[S]. Beijing:Aviation Industry Corporation of China, 1996:1-8(in Chinese).
[19] 谢里阳, 刘建中. 样本信息聚集原理与P-S-N曲线拟合方法[J]. 机械工程学报, 2013, 49(15):96-104. XIE L Y, LIU J Z. Principle of sample polymerization and method of P-S-N curve fitting[J]. Journal of Mechanical Engineering, 2013, 49(15):96-104(in Chinese).
[20] 何玉定, 杨大丰. 过载对60Si2Mn钢弯曲疲劳性能的影响[J]. 湘潭大学自然科学学报, 1997, 19(3):96-100. HE Y D, YANG D F. Effect of overload on bend fatigue property of 60Si2Mn steel[J]. Natural Science Journal of Xiangtan University, 1997, 19(3):96-100(in Chinese).
[21] KIEBOOM O. Fatigue crack initiation and early crack growth in GLARE at different temperatures[D]. Delft:Delft University of Technology, 2000:15-18.
[22] 李绍渊. 纤维金属层压板的应力集中与疲劳裂纹扩展研究[D]. 南京:南京航空航天大学, 2011:43-47. LI S Y. Stress concentrations and fatigue crack growth in fiber metal laminate[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2011:43-47(in Chinese).
[23] VOGELESANGL B, SCHIJVE J, FREDELL R. Fiber metal laminates:Damage tolerant aerospace materials[M]//DEMAID A, DE WIT J H W. Case Studies in Manufacturing with Advanced Materials. Amsterdam:Elsevier, 1995:253-271.

文章导航

/