流体力学与飞行力学

梯形翼风洞试验模型数值模拟技术

  • 王运涛 ,
  • 李伟 ,
  • 李松 ,
  • 孟德虹
展开
  • 1. 中国空气动力研究与发展中心计算空气动力研究所, 绵阳 621000;
    2. 中国空气动力研究与发展中心空气动力国家重点实验室, 绵阳 621000
王运涛,男,博士,研究员,博士生导师。主要研究方向:计算空气动力学。Tel:0816-2463015 E-mail:ytwang@skla.cardc.cn;李伟,男,硕士,研究实习员。主要研究方向:计算空气动力学。Tel:0816-2463062 E-mail:kuaileo6@163.com;李松,男,博士研究生,助理工程师。主要研究方向:计算空气动力学。Tel:0816-7067915 E-mail:lisonic@foxmail.com;孟德虹,男,硕士,助理研究员。主要研究方向:计算空气动力学。Tel:0816-2463062 E-mail:mdh157@163.com

收稿日期: 2015-06-25

  修回日期: 2015-08-07

  网络出版日期: 2015-08-31

基金资助

国家"973"计划(2014CB744803)

Numerical simulation of trapezoidal wing wind tunnel model

  • WANG Yuntao ,
  • LI Wei ,
  • LI Song ,
  • Meng Dehong
Expand
  • 1. Computational Aerodynamics Institute of China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2015-06-25

  Revised date: 2015-08-07

  Online published: 2015-08-31

Supported by

National Basic Research Program of China:Mechanism and Method for Drag Reduction of Trunk Liner (2014CB744800);NUAA Fundamental Research Funds (NS2013013);Fundamental Research Funds for the Central Universities (NP2014602);Aeronautical Science Foundation of China (2013ZA52009)

摘要

基于雷诺平均Navier-Stokes (RANS)方程和结构网格技术,采用二阶空间离散精度的MUSCL格式,并结合k-ω剪切应力输运(SST)两方程湍流模型和γ-Reθ转捩模型,研究了梯形翼风洞试验模型中前缘缝翼、后缘襟翼连接装置对气动特性的影响。简要介绍了本文采用的计算方法;介绍了梯形翼的风洞试验模型及风洞试验结果;在网格收敛性研究的基础上,采用"全湍流"方式和转捩模型研究了梯形翼试验模型连接装置对气动特性的影响。通过与不带连接装置的计算结果的对比,采用"全湍流"模拟方式,计算模型中考虑试验模型的连接装置引起升力系数下降、阻力系数下降、低头力矩减小以及失速迎角提前;通过与试验数据的对比,进一步考虑转捩影响可以提高梯形翼风洞试验模型气动特性的计算结果与试验结果的吻合程度,梯形翼风洞试验模型失速迎角附近的气动特性数值模拟技术还需要进一步的研究。

本文引用格式

王运涛 , 李伟 , 李松 , 孟德虹 . 梯形翼风洞试验模型数值模拟技术[J]. 航空学报, 2016 , 37(4) : 1159 -1165 . DOI: 10.7527/S1000-6893.2015.0226

Abstract

Based on the Reynolds-averaged Navier-Stokes(RANS) equations and structured grid technology, with second-order MUSCL scheme, combined with k-ω shear stress transport (SST) turbulence model and γ-Reθ transition model, the influence of the support brackets included in the wind tunnel model on the aerodynamic characteristics of the high lift trapezoidal wing (Trap wing) is studied. Firstly, the numerical methods are introduced briefly. Then, the wind tunnel models of the Trap wing configuration and the experimental activities are described. And then, on the basis of previous grid convergence study, the influences of the support brackets included in the wind tunnel model on the aerodynamic characteristics of the Trip wing configuration are studied with "fully turbulent" and transition modes. Finally, the conclusions are presented. Compared with the bracket-off numerical results, with "fully turbulent" mode, the support brackets decrease the lift coefficients, drag coefficients and nose-down momentum coefficient, resulting in the earlier stall angle. Compared with the experimental data, the bracket-on numerical results with the transition model are in very good agreement with test data and further study on the simulation technology of aerodynamic characteristics near the stall angle for Trap wing wind tunnel model is needed.

参考文献

[1] ANTON P S, JOHNSON D J, BLOCK M, et al. Wind tunnel and propulsion test facilities:supporting analyses to an assessment of NASA's capabilities to serve national needs:The RAND corporation technical report TR-134[R]. Santa Monica:The RAND Corporation, 2004.
[2] JOHNSON F T, TINOCO E N, YU N J. Thirty years of development and application of CFD at Boeing commercial airplane seattle[J]. Computers & Fluids, 2005, 34(10):1115-1151.
[3] VASSBERG J C, TINOCO E N, MANI M, et al. Summary of the fourth AIAA CFD drag prediction workshop:AIAA-2010-4547[R]. Reston:AIAA, 2010.
[4] LEVY D W, LAFLIN K R, TINOCO E N, et al. Summary of data from the fifth AIAA CFD drag prediction workshop:AIAA-2013-0046[R]. Reston:AIAA, 2013.
[5] RIMSEY C L, YING S X. Prediction of high lift:review of present CFD capability[J]. Progress in Aerospace Sciences, 2002, 38:145-180.
[6] TINOCO E N, BOGUE D R, KAO T J, et al. Progress toward CFD for full flight envelope[J]. The Aeronautical Journal, 2005, 109:451-460.
[7] SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study:a path to revolutionary computational aerosciences:NASA/CR-2014-218178[R]. Hampton:NASA, 2014.
[8] RUDNIL R. CFD assessment for high lift flows in the European project EUROLIFT:AIAA-2003-3794[R]. Reston:AIAA, 2003.
[9] RUDNIK R, VON GEYR H FRHR. The European high lift project EUROLIFT Ⅱ-objectives, approach, and structure:AIAA-2007-4296[R]. Reston:AIAA, 2007.
[10] SLOTNICK J P, HANNON J A, CHAFFIN M. Overview of the first AIAA CFD high lift prediction workshop (invited):AIAA-2011-0862[R]. Reston:AIAA, 2011.
[11] RUMSEY C L, LONG M, STUEVER R A. Summary of the first AIAA CFD high lift prediction workshop(invited):AIAA-2011-0939[R]. Reston:AIAA, 2011.
[12] SCLAFANI A J, SLOTNICK J P, VASSBERG J C, et al. OVERFLOW analysis of the NASA trap wing model from the first high lift prediction workshop:AIAA-2011-0866[R]. Reston:AIAA, 2011.
[13] SCLAFANI A J, SLOTNICK J P, VASSBERG J C, et al. Extended OVERFLOW analysis of the NASA trap wing wind tunnel model:AIAA-2012-2919[R]. Reston:AIAA, 2012.
[14] 王运涛, 李松, 孟德虹, 等. 梯形翼高升力构型的数值模拟技术研究[J]. 航空学报, 2014, 35(12):3213-3221. WANG Y T, LI S, MENG D H, et al. Numerical study on simulation technology of the high lift trapezoidal wing configuration[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(12):3213-3221(in Chinese).
[15] 王运涛, 李松, 王光学, 等. 不同襟翼偏角梯形翼构型气动特性数值模拟[J]. 航空学报, 2015, 36(6):1823-1829. WANG Y T, LI S, WANG G X, et al. Numerical simulation of the aerodynamic characteristics of the trapezoidal wing configuration with different flap angles[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):1823-1829(in Chinese).
[16] 王运涛, 王光学, 张玉伦. TRIP2.0软件的确认:DPWⅡ复杂组合体的数值模拟[J]. 航空学报, 2008, 29(1):34-40. WANG Y T, WANG G X, ZHANG Y L. Validation of TRIP2.0:numerical simulation of DPWⅡ complex configuration[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(1):34-40(in Chinese).
[17] VAN LEER B. Towards the ultimate conservation difference scheme Ⅱ, monoticity and conservation combined in a second order scheme[J]. Journal of Computational Physics, 1974, 14(4):361-370.
[18] MENTER F R. Two equation eddy viscosity turbulence models for engineering application[J]. AIAA Journal, 1994, 32(8):1598-1605.
[19] MENTER F R, LANGTRY R B. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12):2894-2906.
[20] JOHNSON P L, JONES K M, MADSON M D. Experimental Investigation of a simplified 3D high lift configuration of civil transport aircraft:AIAA-2008-0410[R]. Reston:AIAA, 2008.

文章导航

/