电子与控制

城市风场环境中的无人机快速航迹规划方法

  • 李俨 ,
  • 王重 ,
  • 齐延军 ,
  • 王怡馨
展开
  • 西北工业大学 自动化学院, 西安 710129
李俨,男,博士,教授,博士生导师。主要研究方向:无人机自主控制,航迹规划,先进飞行控制。Tel:029-88431303,E-mail:liyan@nwpu.edu.cn;王重,男,硕士研究生。主要研究方向:无人机航迹规划,随机最优控制。E-mail:000wangzhong@mail.nwpu.edu.cn;齐延军,男,硕士研究生。主要研究方向:飞行控制。E-mail:qiyanjun@mail.nwpu.edu.cn;王怡馨,女,硕士研究生。主要研究方向:无人机航迹规划。E-mail:wangyixinbella@163.com

收稿日期: 2015-04-29

  修回日期: 2015-08-26

  网络出版日期: 2015-08-29

基金资助

国家自然科学基金(61473233)

A rapid trajectory planning algorithm for UAV in urban areas with wind fields

  • LI Yan ,
  • WANG Zhong ,
  • QI Yanjun ,
  • WANG Yixin
Expand
  • School of Automation, Northwestern Polytechnical University, Xi'an 710129, China

Received date: 2015-04-29

  Revised date: 2015-08-26

  Online published: 2015-08-29

Supported by

National Natural Science Foundation of China(61473233)

摘要

密集的城市障碍环境以及复杂的城市风场干扰对航迹规划的实时性和航迹跟踪的准确性提出了严格要求,为此提出一种城市风场环境中的小型无人机(UAVs)快速航迹规划方法。首先,为了保证航迹规划的高效性,对固定翼无人机运动学方程进行了合理简化。其次,由于障碍环境中的最优航迹难以直接完全塑造,因此根据状态受限的最优控制理论给出了可以使用螺旋线与直线构建近似最优航迹的结论,并据此提出了一种针对城市环境的三维航迹规划方法。然后,通过对无人机运动学模型的分析,从规划角度提出了风场干扰下的航迹设计准则。仿真实验中,首先通过算法对比实验,验证了航迹规划方法的高效性;然后使用六自由度(DOF)飞机模型分别在无风场干扰和有风场干扰的环境下进行了航迹跟踪实验,实验结果证明了风场干扰下航迹设计准则的有效性。

本文引用格式

李俨 , 王重 , 齐延军 , 王怡馨 . 城市风场环境中的无人机快速航迹规划方法[J]. 航空学报, 2016 , 37(3) : 949 -959 . DOI: 10.7527/S1000-6893.2015.0236

Abstract

A rapid trajectory planning algorithm for small unmanned aerial vehicles(UAVs) in urban areas with wind fields is proposed. The dense obstacles and complex wind fields in the urban area have posed strict requirements on the real-time capability and tracking performance of trajectory planning. Firstly, the kinematic model of the fixed-wing UAV is reasonably simplified to ensure the efficiency of the trajectory planning algorithm. Based on the basic principles of the constrained optimal control theory, the optimal trajectory in the presence of obstacles cannot be directly and fully characterized. And it is shown that the optimal trajectory can be reasonably approximated using spiral and straight line segments. Then a rapid three-dimensional near-optimal trajectory planning algorithm in urban areas is proposed. From a perspective of planning, the new trajectory planning standards and constraints in wind fields are presented. The comparison simulations show the efficiency of the proposed algorithm. Trajectory tracking performance simulations with and without wind fields are also implemented using a 6 degree-of-freedom(DOF) UAV model. And the numerical results also show the effectiveness of the proposed planning standards in wind fields.

参考文献

[1] SAMAD T, BAY J S, GODBOLE D. Network-centric systems for military operations in urban terrain:The role of UAVs[J]. Proceedings of the IEEE, 2007, 95(1):92-107.
[2] JONGRAE K, CRASSIDIS J L. UAV path planning for maximum visibility of ground targets in an urban area[C]//Proceedings of International Conference on Information Fusion. Piscataway, NJ:IEEE Press, 2010:26-29.
[3] KANISTRAS K, MARTINS G, RUTHERFORD M J, et al. Handbook of unmanned aerial vehicles[M]. Berlin:Springer, 2014:2643-2666.
[4] CHAIMOWICZ L, COWLEY A, GOMEZ D, et al. Multi-robot systems, from swarms to intelligent automata[M]. Berlin:Springer, 2005:223-234.
[5] 张伯寅, 桑建国, 吴国昌. 建筑群环境风场的特性及模拟——风环境模拟研究之一[J]. 力学与实践, 2004, 26(3):1-9. ZHANG B Y, SANG J G, WU G C. Applications of aerodynamics in the architectural wind field-Simulation studies of wind environment[J]. Mechanics in Engineering, 2004, 26(3):1-9(in Chinese).
[6] TSOURDOS A, WHITE B, SHANMULGAVEL M. Cooperative path planning of unmanned aerial vehicles[M]. Hoboken, NJ:Wiley, 2011:10-20.
[7] KARAMAN S, FRAZZOLI E. Sampling-based optimal motion planning for non-holonomic dynamical systems[C]//Proceedings of IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE Press, 2013:5041-5047.
[8] KARAMAN S, FRAZZOLI E. Optimal kinodynamic motion planning using incremental sampling-based methods[C]//Proceedings of IEEE Conference on Decision and Control. Piscataway, NJ:IEEE Press, 2010:7681-7687.
[9] KARAMAN S, FRAZZOLI E. Sampling-based algorithms for optimal motion planning[J]. The International Journal of Robotics Research, 2011, 30(7):846-894.
[10] 陈琦, 王中原, 常思江, 等. 不确定飞行环境下的滑翔制导炮弹方案弹道优化[J]. 航空学报, 2014, 35(9):2593-2604. CHEN Q, WANG Z Y, CHANG S J, et al. Optimal trajectory design under uncertainty for a gliding guided projectile[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9):2593-2604(in Chinese).
[11] 张煜, 张万鹏, 陈璟, 等. 基于Gauss伪谱法的UCAV对地攻击武器投放轨迹规划[J]. 航空学报, 2011, 32(7):1240-1251. ZHANG Y, ZHANG W P, CHEN J, et al. Air-to-ground weapon delivery trajectory for UCAV using Gauss pseudospectral method[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(7):1240-1251(in Chinese).
[12] 王宏伦, 裴云峰, 倪少波, 等. 飞行器无动力应急着陆域和着陆轨迹设计[J]. 航空学报, 2014, 35(5):1404-1415. WANG H L, PEI Y F, NI S B, et al. Design of emergency landing region and landing trajectory of unpowered aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(5):1404-1415(in Chinese).
[13] ZHANG Y, CHEN J, SHEN L C. Real-time trajectory planning for UCAV air-to-surface attack using inverse dynamics optimization method and receding horizon control[J]. Chinese Journal of Aeronautics, 2013, 26(4):1038-1056.
[14] ETKIN B. Dynamics of atmospheric flight[M]. Mineola, NY:Dover Publications, 2005:129-130.
[15] CESARI L. Optimization-Theory and applications[M]. Berlin:Springer, 1983:196-199.
[16] PONTRYAGIN L S. Mathematical theory of optimal processes[M]. Boca Raton, FL:CRC Press, 1987:257-311.
[17] BRYSON A E, HO Y C. Applied optimal control:Optimization, estimation and control[M]. Boca Raton, FL:CRC Press, 1975:117-126.
[18] HARTL R F, SETHI S P, VICKSON R G. A survey of the maximum principles for optimal control problems with state constraints[J]. SIAM review, 1995, 37(2):181-218.
[19] LOXTON R C, TEO K L, REHBOCK V, et al. Optimal control problems with a continuous inequality constraint on the state and the control[J]. Automatica, 2009, 45(10):2250-2257.
[20] VAN K T, GILLOT J, DE J B, et al. Solution for state constrained optimal control problems applied to power split control for hybrid vehicles[J]. Automatica, 2014, 50(1):187-192.
[21] JACKSON S, TISDALE J, KAMGARPOUR M, et al. Tracking controllers for small UAVs with wind disturbances:Theory and flight results[C]//Proceedings of IEEE Conference on Decision and Control. Piscataway, NJ:IEEE Press, 2008:564-569.
[22] RYSDYK R. Unmanned aerial vehicle path following for target observation in wind[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(5):1092-1100.
[23] RATNOO A, SUJIT P B, KOTHARI M. Adaptive optimal path following for high wind flights[C]//IFAC World Congress. African Agenda:IFAC, 2011:12985-12990.
[24] WOLEK A, WOOLSEY C. Disturbance rejection in Dubins path planning[C]//Proceedings of IEEE American Control Conference. Piscataway, NJ:IEEE Press, 2012:4873-4878.

文章导航

/