突然启动流动问题:从不可压到高超声速流动
收稿日期: 2015-05-07
修回日期: 2015-05-17
网络出版日期: 2015-09-29
基金资助
国家自然科学基金(11472157); 国家"973"计划(2012CB720205)
Impulsively starting flow problem: from incompressible to hypersonic flow
Received date: 2015-05-07
Revised date: 2015-05-17
Online published: 2015-09-29
Supported by
National Natural Science Foundation of China (11472157); National Basic Research Program of China (2012CB720205)
突然启动流动问题在气动弹性、扑翼飞行和机动飞行中有重要应用价值。鉴于此,对突然启动流动问题涉及的流动与升力演化机制和理论分析方法进行统一介绍并指出目前的理论空白。比较性地介绍了升力随时间变化的原因、预测升力演化的理论方法和主要变化规律。从中发现,不可压缩和可压缩突然启动问题存在各自独立的研究方法与结论,因此进行统一介绍与分析对建立二者之间的关联有指导意义。同时指出,大迎角可压缩突然启动问题尚无理论分析方法和研究结果。作为一项补充研究,采用数值计算发现一个之前尚未报道的现象,即升力系数首先从较低值快速增加至一个峰值,接着快速下降,趋于定常值。该文综述介绍的方法可用于分析突然启动问题升力演化规律。
吴子牛 , 白晨媛 , 徐珊姝 , 李娟 , 林景 , 陈梓钧 , 姚瑶 . 突然启动流动问题:从不可压到高超声速流动[J]. 航空学报, 2015 , 36(8) : 2588 -2600 . DOI: 10.7527/S1000-6893.2015.0147
Impulsively starting flow has important applications in aero-elastics, flapping flight and flight maneuvering. In this paper we provide a state-of-art overview of the related flow characteristics, lift evolution mechanisms and analytical methods for starting flow and point out new issues for future studies. It is shown that starting flow problems have been treated separately to have independent methods and conclusions and the present survey gives a link between these two apparently unrelated problems. We point out that it lacks theoretical method and analysis for compressible starting flow at large angle of attack. As a supplementary study, we perform numerical computation of a hypersonic starting flow at high angle of attack and find a phenomenon never reported before: the lift increases from a small value to a high peak in a very short time and then drops to the steady state value also in a very short time. The methods provided in this review may be useful for studying the lift evolution of starting flow.
Key words: lift; aeroelasticity; incompressible flow; compressible flow; unsteady
[1] Anderson J. McGraw-Hill series in aeronautical and aerospace engineering[M]. [s.l.]: McGraw-Hill, 1989.
[2] Sun M. Insect flight dynamics: stability and control[J]. Reviews of Modern Physics, 2014, 86(2): 615.
[3] Wagner H. Über die Entstehung des dynamischen auftriebes von tragflügeln[J]. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 1925, 5(1): 17-35.
[4] Walker P B. Experiments on the growth of circulation about a wing and an apparatus for measuring fluid motion[J]. Rep. Memo. Aeronaut. Res. (Great Britain), 1931, 1402.
[5] Pullin D I. The large-scale structure of unsteady self-similar rolled-up vortex sheets[J]. Journal of Fluid Mechanics, 1978, 88(3): 401-430.
[6] Graham J M R. The lift on an aerofoil in starting flow[J]. Journal of Fluid Mechanics, 1983, 133: 413-425.
[7] Pitt Ford C W, Babinsky H. Lift and the leading-edge vortex[J]. Journal of Fluid Mechanics, 2013, 720: 280-313.
[8] Dickinson M H, Gotz K G. Unsteady aerodynamic performance of model wings at low Reynolds numbers[J]. The Journal of Experimental Biology, 1993, 174(1): 45-64.
[9] Xia X, Mohseni K. Lift evaluation of a two-dimensional pitching flat plate[J]. Physics of Fluids (1994-present), 2013, 25(9): 091901.
[10] Pullin D I, Wang Z. Unsteady forces on an accelerating plate and application to hovering insect flight[J]. Journal of Fluid Mechanics, 2004, 509: 1-21.
[11] Li J, Wu Z N. Unsteadylift for the wagner problem in the presence of additional leading/trailing edge vortices[J]. Journal of Fluid Mechanics, 2015, 769: 182-217.
[12] Ashley H, Zartarian G. Piston theory-a new aerodynamic tool for the aeroelastician[J]. Journal of the Aeronautical Sciences (Institute of the Aeronautical Sciences), 1956, 23(12): 1109-1118.
[13] Liu D D, Yao Z X, Sarhaddi D, et al. From piston theory to a unified hypersonic-supersonic lifting surface method[J]. Journal of Aircraft, 1997, 34(3): 304-312.
[14] Oppenheimer M W, Skujins T, Bolender M A, et al. A flexible hypersonic vehicle model developed with piston theory, AIAA-2007-6396[R]. Reston: AIAA, 2007.
[15] Lomax H, Heaslet M A, Fuller F B, et al. Two-and three-dimensional unsteady lift problems in high-speed flight, NAGA 1077[R]. Washington, D.C.: NACA, 1952.
[16] Leishman J G. Validation of approximate indicial aerodynamic functions for two-dimensional subsonic flow[J]. Journal of Aircraft, 1988, 25(10): 914-922.
[17] Leishman J G. Indicial lift approximations for two-dimensional subsonic flow as obtained from oscillatory measurements[J]. Journal of Aircraft, 1993, 30(3): 340-351.
[18] Leishman J G. Unsteady lift of a flapped airfoil by indicial concepts[J]. Journal of Aircraft, 1994, 31(2): 288-297.
[19] Hariharan N, Leishman J G. Unsteady aerodynamics of a flapped airfoil in subsonic flow by indicial concepts[J]. Journal of Aircraft, 1996, 33(5): 855-868.
[20] Sitaraman J, Baeder J D. Computational-fluid-dynamics-based enhanced indicial aerodynamic models[J]. Journal of Aircraft, 2004, 41(4): 798-810.
[21] Jose A I, Leishman J G, Baeder J D. Unsteady aerodynamic modeling with time-varying free-stream mach numbers[J]. Journal of The American Helicopter Society, 2006, 51(4): 299-318.
[22] Wu Z N, Bai C Y, Li J, et al. Analysis of flow characteristics for hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 58-85 (in Chinese). 吴子牛, 白晨媛, 李娟, 等. 高超声速飞行器流动特征分析[J]. 航空学报, 2015, 36(1): 58-85.
[23] Bai C Y, Li J, Wu Z N. Generalized Kutta-Joukowski theorem for multi-vortex and multi-airfoil flow with vortex production-A general model[J]. Chinese Journal of Aeronautics, 2014, 27(5): 1037-1050.
[24] Li J, Wu Z N. A two-dimensional multibody integral approach for forces in inviscid flow with free vortices and vortex production[J]. Journal of Fluids Engineering, 2015, 137 (021205-1).
[25] Bai C Y, Wu Z N. Generalized Kutta-Joukowski theorem for multi-vortices and multi-airfoil flow (alumped vortex model)[J]. Chinese Journal of Aeronautics, 2014, 27(1): 34-39.
[26] Bai C Y, Li J, Wu Z N. Unsteady lift for impulsively started transonic/supersonic flow[C]//Proceedings of The ASME 2015 International Mechanical Engineering Congress & Exposition. to appear in, 2015.
[27] Li J, Bai C Y, Wu Z N. Unsteady lift for the wagner problem of starting flow at large angle of attack[C]//Proceedings of The ASME 2015 International Mechanical Engineering Congress & Exposition. to appear in, 2015.
[28] Gaunaa M, Bergami L, Heinz J. Indicial response function for finite-thickness airfoils, a semi-empirical approach, AIAA-2011-0542[R]. Reston: AIAA, 2011.
[29] Bisplinghoff R L, Ashley H, Halfman R L. Aeroelasticity[M]. [s.l.]: Dover Publications, Inc, 1996.
/
〈 | 〉 |