材料工程与机械制造

面向型面精度一致性的整体叶盘砂带磨削新方法及实验研究

  • 肖贵坚 ,
  • 黄云 ,
  • 伊浩
展开
  • 重庆大学 机械传动国家重点实验室, 重庆 400044
肖贵坚,男,博士研究生。主要研究方向:现代制造工艺及装备。Tel:023-67669883 E-mail:xiaoguijian@126.com;黄云,男,博士,教授,博士生导师。主要研究方向:现代制造工艺及装备,先进制造技术,智能制造与装备,机电一体化技术。Tel:023-67669333 E-mail:yunhuang@samhida.com;伊浩,男,硕士研究生。主要研究方向:机械制造及其自动化。Tel:023-67669883 E-mail:1515556950@qq.com

收稿日期: 2015-06-19

  修回日期: 2015-08-12

  网络出版日期: 2015-08-28

基金资助

国家自然科学基金(51275545)

Experimental research of new belt grinding method for consistency of blisk profile and surface precision

  • XIAO Guijian ,
  • HUANG Yun ,
  • YI Hao
Expand
  • The State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing 400044, China

Received date: 2015-06-19

  Revised date: 2015-08-12

  Online published: 2015-08-28

Supported by

National Natural Science Foundation of China (51275545)

摘要

由于整体叶盘由多个叶片组成,根据"木桶定律",整体叶盘的性能和寿命取决于型面精度(型线精度和表面质量)最差的叶片。因此,在满足整体叶盘型面精度的前提下,提高各叶片型面精度一致性对其性能和寿命具有重要的影响。提出一种面向型面精度一致性的砂带磨削新方法,一方面通过砂带周期性的往复运动结合自锐式磨削原理,实现型面铣削残差层的高效去除;另一方面通过砂带周期性的自动更新,保证各叶片的型面精度在同一截面具有高一致性。阐述并建立了面向型面精度一致性的砂带磨削新方法及其磨削控制方程。在此基础上,对某航空发动机整体叶盘的11个叶片进行了砂带磨削实验,并且运用标准差对整体叶盘型面精度一致性进行定量分析。研究结果表明:整体叶盘磨削后,表面粗糙度小于0.25 μm,型线精度小于0.05 mm,同时型面精度一致性显著提高,证明了该方法的有效性。

本文引用格式

肖贵坚 , 黄云 , 伊浩 . 面向型面精度一致性的整体叶盘砂带磨削新方法及实验研究[J]. 航空学报, 2016 , 37(5) : 1666 -1676 . DOI: 10.7527/S1000-6893.2015.0228

Abstract

As the blisk is comprised of many blades, according to the "law of cask", its performance and life are dependent on the worst PF-precision (profile accuracy and surface quality) of blade. So, besides meeting the requirement of the PF-precision, it is important to improve the PF-precision consistency of blisk blade. The new belt grinding method for the consistency of the blisk profile and surface precision is introduced in this paper, the reciprocating motion and self-sharpening grinding are used to efficiently realize material removal, and at the same time, the method of automatic update periodic is used to improve the PF-precision consistency. The new method of belt grinding for the PF-precision of the blisk is illustrated, the consistency control equation for the PF-precision of the blisk is established, and then, the belt grinding experiment is applied to 11 blades of the aeroengine blisk. Meanwhile, the standard deviation is used to analyze the consistency of PF-precision of blisk. The results show that the surface roughness is less than 0.25 μm, the profile accuracy is less than 0.05 mm and the PF-precision consistency is significantly improved.

参考文献

[1] 任军学, 张定华, 王增强, 等. 整体叶盘数控加工技术研究[J]. 航空学报, 2004, 25(2):205-208. REN J X, ZHANG D H, WANG Z Q, et al. Research on the NC machining technique of blisk[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(2):205-208(in Chinese).
[2] 黄云, 黄智. 现代砂带磨削技术及工程应用[M]. 重庆:重庆大学出版社, 2009:12-16. HUANG Y, HUANG Z. Modern abrasive belt grinding technology and application in engineering[M]. Chongqing:Chongqing University Press, 2009:12-16(in Chinese).
[3] 黄云, 杨俊峰, 叶潇潇, 等. 一种适应于航空航天整体叶盘叶片内外弧面的砂带磨削装置:CN2012102340507[P]. 2014-06-18. HUANG Y, YANG J F, YE X X, et al. A belt grinding equipment used for blisk blade edge-R:CN2012102340507[P]. 2014-06-18(in Chinese).
[4] 陈蔚芳, 楼佩煌, 陈华. 薄壁件加工变形主动补偿方法[J]. 航空学报, 2009, 30(3):570-576. CHEN W F, LOU P H, CHEN H. Active compensation methods of machining deformation of thin-walled parts[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(3):570-576(in Chinese).
[5] 万敏, 张卫红. 铣削过程中误差预测与补偿技术研究进展[J]. 航空学报, 2008, 29(5):1340-1349. WAN M, ZHANG W H. Overviews of technique research progress of form error prediction and error compensation in milling process[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(5):1340-1349(in Chinese).
[6] ZHAO P B, SHI Y Y. Adaptive sliding mode control of the A-axis used for blisk manufacturing[J]. Chinese Journal of Aeronautics, 2014, 27(3):708-715.
[7] ZHAO P B, SHI Y Y. Posture adaptive control of the flexible grinding head for blisk manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2014, 70(9):1989-2001.
[8] 段继豪, 史耀耀, 李小彪, 等. 整体叶盘柔性磨头自适应抛磨实现方法[J]. 航空学报, 2011, 32(5):934-940. DUAN J H, SHI Y Y, LI X B, et al. Adaptive polishing for blisk by flexible grinding head[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5):934-940(in Chinese).
[9] GOETZ F M, CHOW C W, WANG W, et al. Application of vibropeening on aero-engine component[J]. Procedia CIRP, 2014, 13:423-428.
[10] WOLFGANG H, GOETZ F M, THOMAS H. Shot peening method for aerofoil treatment of blisk assemblies[J]. Procedia CIRP, 2014, 13:355-358.
[11] XU Z Y, XU Q, ZHU D, et al. A high efficiency electrochemical machining method of blisk channels[J]. CIRP Annals-Manufacturing Technology, 2013, 62(1):187-190.
[12] LIU X, KANG X, ZHAO W, et al. Electrode feeding path searching for 5-axis EDM of integral shrouded blisks[J]. Procedia CIRP, 2013, 6:107-111.
[13] XU Z Y, SUN L Y, HU Y, et al. Flow field design and experimental investigation of electrochemical machining on blisk cascade passage[J]. The International Journal of Advanced Manufacturing Technology, 2014, 71(1):459-469.
[14] ZHU D, ZHU D, XU Z Y. Optimal design of the sheet cathode using W-shaped electrolyte flow mode in ECM[J]. The International Journal of Advanced Manufacturing Technology, 2012, 62(1):147-156.
[15] ZHU D, ZHU D, XU Z Y, et al. Trajectory control strategy of cathodes in blisk electrochemical machining[J]. Chinese Journal of Aeronautics, 2013, 26(4):1064-1070.
[16] 刘嘉, 朱栋, 万龙凯, 等. 整体叶盘电解加工移动密封阴极设计与试验[J]. 中国机械工程, 2014, 25(14):1847-1851. LIU J, ZHU D, WAN L K, et al. Design and experiments of slip seal structure cathode in ECM of blisk[J]. China Mechanical Engineering, 2014, 25(14):1847-1851(in Chinese).
[17] 刘嘉, 徐正扬, 万龙凯, 等. 整体叶盘型面电解加工阴极进给方向优化及试验研究[J]. 机械工程学报, 2014, 50(7):146-153. LIU J, XU Z Y, WAN L K, et al. Optimization and experiment of cathode feeding direction in electrochemical machining of blisk[J]. Journal of Mechanical Engineering, 2014, 50(7):146-153(in Chinese).
[18] RHOADES L J. Abrasive flow machining[J]. Manufacturing Engineering, 1988, 11:75-78.
[19] SINGH S, SHAN H S. Development of magneto abrasive flow machining process[J]. International Journal of Machine Tools and Manufacture, 2002, 42(8):953-959.
[20] 程荣凯. 整体叶盘型面磨削加工工艺研究[D]. 重庆:重庆大学, 2014. CHEN R K. Research on the grinding process of the blisk moulding surface[D]. Chongqing:Chongqing University, 2014(in Chinese).
[21] 魏和平. 整体叶盘叶片内外弧型面砂带磨削技术研究[D]. 重庆:重庆大学, 2014. WEI H P. Research on abrasive belt grinding of blisk blade inner and outer profile[D]. Chongqing:Chongqing University, 2014(in Chinese).
[22] 刘召洋. 整体叶盘叶片型面砂带磨削路径规划与机床空间轴系分析[D]. 重庆:重庆大学, 2014. LIU Z Y. Path planning for blisk blade surface belt grinding and spatial axis analysis[D]. Chongqing:Chongqing University, 2014(in Chinese).
[23] XIAO G J, HUANG Y. Constant-load adaptive belt polishing of the weak-rigidity blisk blade[J]. The International Journal of Advanced Manufacturing Technology, 2015, 78(9-12):1473-1484.
[24] XIAO G J, HUANG Y. Equivalent self-adaptive belt grinding for the real-R edge of an aero-engine precision-forged blade[J]. The International Journal of Advanced Manufacturing Technology,2016, 83(9-12):1697-1706.
[25] 黄云, 肖贵坚, 潘复生, 等. 一种砂带研磨抛光装置:CN201410334811[P]. 2014-7-15. HUANG Y, XIAO G J, PAN F S, et al. Abrasive belt grinding and polishing device:CN201410334811[P]. 2014-7-15(in Chinese).

文章导航

/