稳态热传导下基于多相材料的一体化设计
收稿日期: 2015-04-09
修回日期: 2015-07-30
网络出版日期: 2015-08-28
基金资助
国家自然科学基金(11202078);北京市自然科学基金(3143025);工程车辆轻量化与可靠性技术湖南省高校重点实验室(长沙理工大学)开放基金(2013KFJJ01);中央高校基本科研业务费专项资金(2014ZD16)
Concurrent topology optimization based on multiphase materials under steady thermal conduction
Received date: 2015-04-09
Revised date: 2015-07-30
Online published: 2015-08-28
Supported by
National Natural Science Foundation of China (11202078);Beijing Natural Science Foundation (3143025);The Key Laboratory of Lightweight and Reliability Technology for Engineering Vehicle,Education Department of Hunan Province (Changsha University of Science&Technology)(2013KFJJ01);Fundamental Research Funds for the Central Universities (2014ZD16)
提出一种基于多相多孔材料的一体化模型。模型以结构散热弱度最小为目标,以结构体积比与材料微结构质量为约束。引入独立的宏观设计变量和微观相设计变量,通过单元相密度建立两类变量间的联系;基于对等混合材料插值模型建立单元相密度与热传导系数间的惩罚关系;推导得到目标函数灵敏度表达式。求解偏微分方程实现单元散热弱度过滤,消除棋盘格及网格依赖性现象。通过二维数值算例讨论并分析了材料特性、热载荷、体积比约束以及质量约束对一体化优化结果的影响。数值实验结果表明,该建模方法在多相材料/结构一体化稳态热传导优化设计中具有可行性和有效性。
贾娇 , 龙凯 , 程伟 . 稳态热传导下基于多相材料的一体化设计[J]. 航空学报, 2016 , 37(4) : 1218 -1227 . DOI: 10.7527/S1000-6893.2015.0214
Based on multiphase materials, a concurrent optimization model of macrostructures and porous microstructures is proposed. In this model, the minimized heat compliance is taken as objective function. Structural volume fraction and microstructure mass are taken as constraints. Macro design variables and micro phase design variables are introduced into macrostructures and microstructures independently, and are integrated into one system with elemental phase density. The punishment relationship between elemental phase density and thermal conductive coefficient is built through uniform interpolation model, and the sensitivity of objective function is deduced. To eliminate the checkerboard pattern and mesh-dependence problem, the heat compliance is filtered using a partial differential equation. The effects of material characteristics, heat loads, volume fraction and microstructure mass constraints are discussed with 2D problems. The numerical results indicate that the proposed method is reliable and efficient to the concurrent topology optimization of macrostructures and porous microstructures based on multiphase materials.
[1] BENDSOE M P, KIKUCHI N. Generating optimal topologies in structural design using a homogenization method[J]. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2):197-224.
[2] SIGMUND O. Materials with prescribed constitutive parameters-An inverse homogenization problem[J]. International Journal of Solids and Structures, 1994, 31(17):2313-2329.
[3] SIGMUND O, TORQUATO S. Design of materials with extreme thermal expansion using a three-phase topology optimization method[J]. Journal of the Mechanics and Physics of Solids, 1997, 45(6):1037-1067.
[4] ZHANG W H, WANG F W. Topology optimal design of material microstructures using strain energy-based method[J]. Chinese Journal of Aeronautics, 2007, 20(4):321-328.
[5] MOSES E, FUCHS M B, RYVKIN M. Topological design of modular structures under arbitrary loading[J]. Structural and Multidisciplinary Optimization, 2002, 24(6):407-417.
[6] HUANG X D, XIE Y M. Optimal design of periodic structures using evolutionary topology optimization[J]. Structural and Multidisciplinary Optimization, 2008, 36(6):597-606.
[7] XIE Y M, ZUO Z H, HUANG X D, et al. Convergence of topological patterns of optimal periodic structures under multiple scales[J]. Structural and Multidisciplinary Optimization, 2012, 46(1):41-50.
[8] GUO X, CHENG G D. Recent development in structural design and optimization[J]. Acta Mechanica Sinica, 2010, 26(6):807-823.
[9] RODRIGUES H, GUEDES J M, BENDSOE M P. Hierarchical optimization of material and structure[J]. Structural and Multidisciplinary Optimization, 2002, 24(1):1-10.
[10] LIU L, YAN J, CHENG G D. Optimum structures with homogeneous optimum truss-like material[J]. Computers & Structures, 2008, 86(13):1417-1425.
[11] YAN J, CHENG G D, LIU L. A uniform optimum material based model for concurrent optimization of thermoelastic structures and materials[J]. International Journal for Simulation and Multidisciplinary Design Optimization, 2008, 2(4):259-266.
[12] NIU B, YAN J, CHENG G D. Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency[J]. Structural and Multidisciplinary Optimization, 2009, 39(2):115-132.
[13] 张卫红, 孙士平. 多孔材料/结构尺度关联的一体化拓扑优化技术[J]. 力学学报, 2006, 38(4):522-529. ZHANG W H, SUN S P. Integrated design of porous materials and structures with scale-coupled effect[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(4):522-529(in Chinese).
[14] ZHANG W H, SUN S P. Scale-related topology optimization of cellular materials and structures[J]. International Journal for Numerical Methods in Engineering, 2006, 68(9):993-1011.
[15] 阎军, 刘岭, 刘晓峰, 等. 考虑尺寸效应的模块化结构两层级优化设计[J]. 力学学报, 2010, 42(2):268-274. YAN J, LIU L, LIU X F, et al. Concurrent hierarchical optimization for structures composed of modules considering size effects[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(2):268-274(in Chinese).
[16] LIU Y D, YIN Y H, GUO Z Z. Static and dynamic design based on hierarchical optimization for materials and structure of porous metals[J]. Science China Technological Sciences, 2012, 55(10):2808-2814.
[17] HUANG X D, ZHOU S W, XIE Y M, et al. Topology optimization of microstructures of cellular materials and composites for macrostructures[J]. Computational Materials Science, 2013, 67:397-407.
[18] ZUO Z H, HUANG X D, RONG J H, et al. Multi-scale design of composite materials and structures for maximum natural frequencies[J]. Material and Design, 2013, 51:1023-1034.
[19] YAN X L, HUANG X D, ZHA Y, et al. Concurrent topology optimization of structures and their composite microstructures[J]. Computers & Structures, 2014, 133:103-110.
[20] XU B, XIE Y M. Concurrent design of composite macrostructure and cellular microstructure under random excitations[J]. Composite Structures, 2015, 123:65-77.
[21] XU B, JIANG J S, XIE Y M. Concurrent design of composite macrostructure and multi-phase material microstructure for minimum dynamic compliance[J]. Composite Structures, 2015, 128:221-233.
[22] SIGMUND O. Design of multiphysics actuators using topology optimization Part Ⅱ:Two material structures[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(49):6605-6627.
[23] MEI Y L, WANG X M. A level set method for structural topology optimization with multi-constraints and multimaterials[J]. Acta Mechanica Sinica, 2004, 20(5):507-518.
[24] WANG M Y, ZHOU S W. Synthesis of shape and topology of multi-material structures with a phase-field method[J]. Journal of Computer-Aided Materials Design, 2004, 11(2-3):117-138.
[25] 高彤, 张卫红, Duysinx PIERRE. 多相材料结构拓扑优化:体积约束还是质量约束?[J]. 力学学报, 2011, 43(2):296-305. GAO T, ZHANG W H, PIERRE D. Topology optimization of structures designed with multiphase materials:Volume constraint or mass constraint?[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(2):296-305(in Chinese).
[26] TAVAKOLI R, MOHSENI S M. Alternating active-phase algorithm for multimaterial topology optimization problems:A 115-line MATLAB implementation[J]. Structural and Multidisciplinary Optimization, 2014, 49(4):621-642.
[27] 孙士平, 张卫红. 多相材料结构拓扑优化的周长控制方法研究[J]. 航空学报, 2006, 27(5):963-968. SUN S P, ZHANG W H. Investigation of perimeter control methods for structural topology optimization with multiphase materials[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(5):963-968(in Chinese).
[28] STEGMANN J, LUND E. Discrete material optimization of general composite shell structures[J]. International Journal for Numerical Methods in Engineering, 2005, 62(14):185-197.
[29] 段尊义, 阎军, 牛斌, 等. 基于改进离散材料插值格式的复合材料结构优化设计[J]. 航空学报, 2012, 33(12):2221-2229. DUAN Z Y, YAN J, NIU B, et al. Design optimization of composite materials based on improved discrete materials optimization model[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(12):2221-2229(in Chinese).
[30] LAZAROV B S, SIGMUND O. Filters in topology optimization based on Helmholtz-type differential equations[J]. International Journal for Numerical Methods in Engineering, 2011, 86(6):765-781.
[31] ANDREASSEN E, CLAUSEN A, SCHEVENELS M, et al. Efficient topology optimization in MATLAB using 88 lines of code[J]. Structural and Multidisciplinary Optimization, 2011, 43(1):1-16.
[32] SVANBERG K. The method of moving asymptotes-A new method for structural optimization[J]. International Journal for Numerical Methods in Engineering, 1987, 24(2):359-373.
/
〈 | 〉 |