航天器交会对接模拟系统逼近过程自抗扰控制
收稿日期: 2015-06-11
修回日期: 2015-08-05
网络出版日期: 2015-08-18
Active disturbance rejection control for spacecraft rendezvous and docking simulation system during proximity operations
Received date: 2015-06-11
Revised date: 2015-08-05
Online published: 2015-08-18
航天器交会对接地面模拟系统用于研究航天器交会对接过程的动力学、导航与控制等方面的相关问题。模拟器通过气浮轴承悬浮在大理石平台上来模拟太空的无摩擦微重力环境。通常情况下要保证大理石平台足够水平,由于实际平台不可能完全水平,模拟器的重力分量会使模拟器产生下滑现象,这种现象对大型地面模拟器设备尤为严重。针对模拟器的逼近过程设计了轨迹规划。为了减小测量信号噪声的影响,采用跟踪微分器(TD)对整个逼近过程中的测量信号进行滤波。针对逼近过程中模拟器存在下滑力等干扰问题设计控制器,通过扩张状态观测器(ESO)实时估计干扰量,进而对干扰量进行补偿。对模拟器冷喷气推力系统制定了推力器分配策略,采用脉冲宽度调制(PWM)技术实现对推力的近似等效。提出的控制方法应用于航天器交会对接地面模拟系统,实验结果表明所提出的控制方法能有效消除下滑力等干扰的影响。
徐喆垚 , 陈宇坤 , 齐乃明 , 阳勇 . 航天器交会对接模拟系统逼近过程自抗扰控制[J]. 航空学报, 2016 , 37(5) : 1552 -1562 . DOI: 10.7527/S1000-6893.2015.0220
Spacecraft rendezvous and docking ground simulation system are used to study the dynamics, navigation and control algorithms of spacecraft on the ground. Spacecraft simulators are floated on the marble platform using planar air bearings to simulate a frictionless and space micro-gravity environment. While the marble platform cannot be absolutely horizontal, the component of simulator gravity will lead to the sliding of the simulator on the platform, which is particularly serious for large-scale simulator. In this paper, a trajectory for proximity operations of spacecraft ground simulator is designed. Signal is filtered by tracking differentiator (TD) in the control process. A controller of the simulator is designed to compensate for the disturbances by extended state observer (ESO). The disturbances are estimated in real time. The thruster allocation strategy of the cold jet thrusters system is also designed and control of thrusters using pulse width modulation (PWM) is presented. The method proposed is applied to the spacecraft rendezvous and docking ground simulation system. Experimental results show that the control method is highly effective in reducing the effects of the sliding force disturbance.
[1] MACHULA M F, SANDHOO G S. Rendezvous and docking for space exploration:AIAA-2005-2716[R]. Reston:AIAA, 2005.
[2] SCHWARTZ J L, PECK M A, HALL C D. Historical review of air-bearing spacecraft simulators[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(4):513-522.
[3] ROMANO M, FRIEDMAN D A, SHAY T J. Laboratory experimentation of autonomous spacecraft approach and docking to a collaborative target[J]. Journal of Spacecraft and Rockets, 2007, 44(1):164-173.
[4] CAVE G L. Development and control of robotic arms for the naval postgraduate school planar autonomous docking simulator (NPADS)[D]. Monterey, CA:Naval Postgraduate School, 2002.
[5] JUNG D, TSIOTRAS P. A 3-DoF experimental test-bed for integrated attitude dynamics and control research[C]//Proceedings of AIAA Guidance, Navigation and Control Conference. Reston:AIAA, 2003:5331.
[6] JUNG D, TSIOTRAS P. An experimental comparison of CMG steering control laws:AIAA-2004-5294[R]. Reston:AIAA, 2004.
[7] CHO D M, JUNG D, TSIOTRAS P. A 5-DoF experimental platform for autonomous spacecraft rendezvous and docking:AIAA-2009-1869[R]. Reston:AIAA, 2009.
[8] SCHARF D P, HADAEGH F Y, KEIM J A. Ground demonstration of synchronized formation rotations for precision, multi-spacecraft interferometers[C]//Proceedings of the 3rd International Symposium on Formation Flying, Missions and Technologies, 2008.
[9] SCHARF D P, HADAEGH F Y, KEIM J A, et al. Flight-like ground demonstration of precision formation flying spacecraft[C]//Proceedings of SPIE. Bellingham, WA:SPIE, 2007:669307-1-12.
[10] SHIELDS J F. The formation control testbed celestial sensor:Overview, modelling, and calibrated performance[C]//Proceedings of 2005 IEEE Aerospace Conference. Piscataway, NJ:IEEE Press, 2005:1-9.
[11] SCHARF D P, KEIM J A, HADAEGH F Y. Flight-like ground demonstrations of precision maneuversfor spacecraft formations-Part I[J]. IEEE Systems Journal, 2010, 4(1):84-95.
[12] SCHARF D P, KEIM J A, HADAEGH F Y. Flight-like ground demonstrations of precision maneuvers for spacecraft formations-Part II[J]. IEEE Systems Journal, 2010, 4(1):96-106.
[13] 许剑, 杨庆俊, 包钢, 等. 五自由度气浮台平动时侧向干扰力问题的研究[J]. 宇航学报, 2009, 30(5):1823-1828. XU J, YANG Q J, BAO G, et al. Research on lateral disturbance force of the 5-DoF air-bearing spacecraft simulator[J]. Journal of Astronautics, 2009, 30(5):1823-1828(in Chinese).
[14] 韩京清. 自抗扰控制技术[M]. 北京:国防工业出版社, 2008:46-97. HAN J Q. Active disturbance rejection control technique[M]. Beijing:National Defense Industry Press, 2008:46-97(in Chinese).
[15] 宋金来, 甘作新, 韩京清. 自抗扰控制技术滤波特性的研究[J]. 控制与决策, 2003,18(1):110-119. SONG J L, GAN Z X, HAN J Q. Study of active disturbance rejection controller on filtering[J]. Control and Decision, 2003, 18(1):110-119(in Chinese).
[16] 马悦悦, 唐胜景, 郭杰, 等. 基于自抗扰与模糊逻辑的大攻角控制系统设计[J]. 系统工程与电子技术, 2013, 35(8):1711-1716. MA Y Y, TANG S J, GUO J, et al. High angle of attack control system design based on ADRC and fuzzy logic[J]. Systems Engineering and Electronics, 2013, 35(8):1711-1716(in Chinese).
[17] 李自行, 李高风. 移动质心再入飞行器建模及自抗扰滚动控制[J]. 航空学报, 2012, 33(11):2121-2129. LI Z X, LI G F. Moving centroid reentry vehicle modeling and active disturbance rejection roll control[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11):2121-2129(in Chinese).
[18] 吴忠, 黄丽雅, 魏孔明, 等. 航天器姿态自抗扰控制[J]. 控制理论与应用, 2013, 30(12):1617-1622. WU Z, HUANG L Y, WEI K M, et al. Active disturbance rejection control of attitude for spacecraft[J]. Control Theory & Applications, 2013, 30(12):1617-1622(in Chinese).
[19] 赖爱芳, 郭毓, 郑立君. 航天器姿态机动及稳定的自抗扰控制[J]. 控制理论与应用, 2012, 29(3):401-407. LAI A F, GUO Y, ZHENG L J. Active disturbance rejection control for spacecraft attitude maneuver and stability[J]. Control Theory & Applications, 2012, 29(3):401-407(in Chinese).
[20] 方勇纯, 申辉, 孙秀云, 等. 无人直升机航向自抗扰控制[J]. 控制理论与应用, 2014, 31(2):238-243. FANG Y C, SHEN H, SUN X Y, et al. Active disturbance rejection control for heading of unmanned helicopter[J]. Control Theory & Applications, 2014, 31(2):238-243(in Chinese).
[21] 周黎妮, 唐国金, 李海阳. 航天器姿态机动的自抗扰控制器设计[J]. 系统工程与电子技术, 2007, 29(12):2122-2126. ZHOU L N, TANG G J, LI H Y. Active disturbance rejection controller design for spacecraft attitude maneuver[J]. System Engineering and Electronics, 2007, 29(12):2122-2126(in Chinese).
[22] 徐琦, 孙明玮, 陈增强, 等. 内模控制框架下时延系统扩张状态观测器参数整定[J]. 控制理论与应用, 2013, 30(12):1641-1645 XU Q, SUN M W, CHEN Z Q, et al. Extended state observer tuning for time-delay systems in the framework of internal model control[J]. Control Theory & Applications, 2013, 30(12):1641-1645(in Chinese).
/
〈 | 〉 |