流体力学与飞行力学

前缘高频振动对亚声速开式空腔内强噪声影响的数值研究

  • 宁方立 ,
  • 史红兵 ,
  • 丘廉芳 ,
  • 卫金刚
展开
  • 西北工业大学机电学院, 西安 710072
宁方立,男,博士,教授,博士生导师。主要研究方向:气动声学、强声密封。Tel:029-82493927,E-mail:ningfl@nwpu.edu.cn;史红兵,男,硕士研究生。主要研究方向:气动声学,E-mail:shihongbingnwpu@163.com;丘廉芳,男,硕士研究生。主要研究方向:气动声学,E-mail:qiulf132057@mail.nwpu.edu.cn;卫金刚,男,硕士研究生。主要研究方向:气动声学,E-mail:weijg623417@163.com

收稿日期: 2015-05-14

  修回日期: 2015-08-06

  网络出版日期: 2015-08-18

基金资助

国家自然科学基金(51075329,51375385);航空科学基金(20131553019);陕西省自然科学基础研究计划项目(2014JM2-6116);西北工业大学研究生创意创新种子基金(Z2015069)

Numerical research of high frequency vibration effect on subsonic open cavity macro-noise

  • NING Fangli ,
  • SHI Hongbing ,
  • QIU Lianfang ,
  • WEI Jin'gang
Expand
  • School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2015-05-14

  Revised date: 2015-08-06

  Online published: 2015-08-18

Supported by

National Natural Science Foundation of China (51075329,51375385); Aeronautical Science Foundation of China (20131553019); Natural Science Basic Research Plan in Shaanxi Province (2014JM2-6116); The Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University (Z2015069)

摘要

空腔流动现象广泛存在于各类航空飞行器中,对其包含的多种复杂物理现象的研究具有十分重要的工程及实际意义。采用大涡模拟方法对开式空腔噪声进行数值仿真,并研究了腔体前缘壁面施加高频振动后对腔体内部纯音噪声及模态的影响。研究发现随着壁面振动频率的提高,腔体内部的纯音噪声峰值逐渐降低,当腔体前缘壁面振动频率达到4000 Hz时,腔体内部1阶与2阶模态的纯音噪声峰值分别降低15 dB和17 dB。因此在腔体前缘壁面施加高频振动能显著地降低腔体内部的纯音噪声,为扩展开式空腔的工程应用奠定了良好的理论基础。

本文引用格式

宁方立 , 史红兵 , 丘廉芳 , 卫金刚 . 前缘高频振动对亚声速开式空腔内强噪声影响的数值研究[J]. 航空学报, 2015 , 36(12) : 3843 -3852 . DOI: 10.7527/S1000-6893.2015.0223

Abstract

Cavity flow phenomena widely exist in all kinds of aerospace vehicles. Research on the complicated physical phenomena in cavities is of great importance to engineering applications. Large eddy simulation method is used to simulate the open cavity noise. We apply high frequency wall vibration at the leading edge of the cavity and investigate its influence on the mode and the noise inside the cavity. The study shows that the peak of the pure tone noise inside the cavity decreases as the frequency of the wall vibration increases. When the vibration frequency at the leading edge reaches 4000 Hz, the peak of the pure tone noise of the main and second mode in the interior of the cavity can be reduced by 15 dB and 17 dB respectively. Therefore, the peak of the pure tone noise inside the cavity can be reduced significantly with the high frequency wall vibration applied at the leading edge of the cavity. This work will pave the way to extend the applications of subsonic open cavities.

参考文献

[1] Rossiter J E, Kurn A. Wind tunnel measurements of the unsteady pressures in and behind a bomb bay[R]. Technical Report AERO. 2677. London:Royal Aircraft Establishment, 1963.
[2] Rossiter J E. Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds[R]. London:Royal Aircraft Establishment, 1964.
[3] Smith B R, Welterlen T J, Maines B H, et al. Weapons bay acoustic suppression from rod spoilers, AIAA-2002-0662[R]. Reston:AIAA, 2002.
[4] Vakili A D, Gauthier C. Control of cavity flow by upstream mass-injection[J]. Journal of Aircraft, 1994, 31(1):169-174.
[5] Grove J E, Birkbeck R M, Kreher J M, et al. Acoustic and separation characteristics with bay leading edge blowing, AIAA-2000-1904[R]. Reston:AIAA, 2000.
[6] Bueno P C, Unalmis O H, Clemens N T, et al. The effects of upstream mass injection on a Mach 2 cavity flow, AIAA-2002-0663[R]. Reston:AIAA, 2002.
[7] Shaw L. Active control for cavity acoustics, AIAA-1998-2347[R]. Reston:AIAA, 1998.
[8] Li Y G, Fan K T, Zhang L Z, et al. Development of high frequency piezoelectric ceramic resonator[J]. Piezoelectrics & Acoustooptics, 2001, 23(3):183-185(in Chinese).李月国,范坤泰,张录州,等.高频压电陶瓷谐振器的研制[J].压电与声光, 2001, 23(3):183-185.
[9] Henshaw M J. M219 cavity case[R]. DTIC Document. East Riding of Yorkshire:British Aerospace, 2000.
[10] Ashworth R M. Prediction of acoustic resonance phenomena for weapon bays using detached eddy simulation[J]. Aeronautical Journal, 2005, 109(1102):631-638.
[11] Ma M S, Zhang P H, Deng Y Q, et al. Numerical simulation investigation of supersonic cavity flow[J]. Acta Aerodynamica Sinica, 2008, 26(3):388-393(in Chinese).马明生,张培红,邓有奇,等.超声速空腔流动数值模拟研究[J].空气动力学学报, 2008, 26(3):388-393.
[12] Zhang J, Morishita E, Okunuki T, et al. Experimental and computational investigation of supersonic cavity flows, AIAA-2001-1755[R]. Reston:AIAA, 2001.
[13] Wu J F, Luo X F, Fan Z L. Flow control method to improve cavity flow and store separation characteristics[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10):1840-1845(in Chinese).吴继飞,罗新福,范召林.内埋式弹舱流场特性及武器分离特性改进措施[J].航空学报, 2009, 30(10):1840-1845.
[14] Chen X, Sandham N D, Zhang X. Cavity flow noise predictions[R]. Final Report for MSTARR DARP. Southampton:University of Southampton, 2007.
[15] Xiao Z X. Complex Navier-Stokes equations numerical simulation of flow and turbulence model application research[D]. Xi'an:Northwestern Polytechnical University, 2003(in Chinese).肖志祥.复杂流动Navier-Stokes方程数值模拟及湍流模型应用研究[D].西安:西北工业大学, 2003.
[16] Felten F, Fautrelle Y, Terrail Y D, et al. Numerical modelling of electromagnetically-driven turbulent flows using LES methods[J]. Applied Mathematical Modelling, 2004, 28(1):15-27.
[17] Abbott M B, Basco D R. Computational fluid dynamics an introduction for engineers[R]. NASA STI/Recon Technical Report A. Harlow:International Institute for Hydraulic and Environmental Engineering, 1989.
[18] Galperin B, Orszag S A. Large eddy simulation of complex engineering and geophysical flows[M]. Oxford:Cambridge University Press, 1993:36-51.
[19] Doris L, Tenaud C, Phuoc L T. LES of spatially developing 3D compressible mixing layer[J]. Comptes Rendus de l'Académie des Sciences-Series ⅡB-Mechanics, 2000, 328(7):567-573.
[20] Boris J P, Grinstein F F, Oran E S, et al. New insights into large eddy simulation[J]. Fluid Dynamics Research, 1992, 10(4-6):199-228.
[21] Kim W, Menon S. A new dynamic one-equation subgrid scale model for large eddy simulations, AIAA-1995-0356[R]. Reston:AIAA, 1995.
[22] Cattafesta I L, Garg S, Choudhari M, et al. Active control of flow-induced cavity resonance, AIAA-1997-1804[R]. Reston:AIAA, 1997.

文章导航

/