材料工程与机械制造

基于相似理论的星球车牵引通过性模型

  • 黄晗 ,
  • 李建桥 ,
  • 党兆龙 ,
  • 吴宝广 ,
  • 邹猛
展开
  • 1. 吉林大学 工程仿生教育部重点实验室, 长春 130025;
    2. 中国空间技术研究院, 北京 100194
黄晗 男,博士研究生。主要研究方向:车辆地面力学。E-mail:huanghan452012@163.com

收稿日期: 2015-06-09

  修回日期: 2015-07-25

  网络出版日期: 2015-08-05

基金资助

国家自然科学基金(51375199)

Planetary rover's tractive performance model based on similarity theory

  • HUANG Han ,
  • LI Jianqiao ,
  • DANG Zhaolong ,
  • WU Baoguang ,
  • ZOU Meng
Expand
  • 1. Key Laboratory of Bionic Engineering(Ministry of Education), Jilin University, Changchun 130025, China;
    2. China Academy of Space Technolegy, Beijing 100194, China

Received date: 2015-06-09

  Revised date: 2015-07-25

  Online published: 2015-08-05

Supported by

National Natural Science Foundation of China (51375199)

摘要

深空探测车辆在星球表面巡视过程中,应避免过度沉陷,保障其可靠的通过性能具有重要意义。月球和火星表面重力加速度分别约为地球表面重力加速度的1/6和2/5,地面实现低重力环境的模拟具有一定局限性,因此基于相似理论进行轮壤相互作用系统的量纲分析,研制二分之一缩比模型车;开展缩比模型车轮壤试验,重点研究滑转条件下车轮沉陷行为和牵引特性;基于地面力学理论,结合轮壤接触应力分布的线性化方法,建立与沉陷和滑转率相关联的星球车挂钩牵引力预测模型。通过土槽试验数据对模型进行验证,结果表明该模型具有较高的准确性。能够为星球车通过性评估提供一定的理论技术基础。

本文引用格式

黄晗 , 李建桥 , 党兆龙 , 吴宝广 , 邹猛 . 基于相似理论的星球车牵引通过性模型[J]. 航空学报, 2016 , 37(6) : 1974 -1982 . DOI: 10.7527/S1000-6893.2015.0217

Abstract

It is important to ensure reliable mobility performance and avoid excessive sinkage for planetary rover. Gravity acceleration on the moon and mars is about one-sixth and two-fifths of the earth, respectively; however, there are certain limitations to simulate low gravity environment on the earth. Therefore, based on similarity principle and terramechanics theory, we present a dimensional analysis on wheel-soil system. A scaling planetary rover has been developed, which is used for eliminating the equivalent influence of the low gravity in the ground experiments. Soil bin tests of the planetary rover are conducted on two different terrains, and the sinkage and tractive characteristics of planetary model rover have also been analyzed. By combining the linearization approach on contact stress distribution between wheel and soil interface, a simplified drawbar pull model is established, which is related to the wheel sinkage and slip ratio. The model is validated through the soil bin testing data and results indicate that the proposed model has a higher accuracy in the mobility performance assessment, including wheel sinkage and drawbar pull.

参考文献

[1] WONG J Y. Theory of ground vehicles[M]. Hoboken, NJ:John Wiley & Sons, 2008:133-134.
[2] WONG J Y. Terramechanics and off-road vehicle engineering[M]. 2nd ed. Oxford:Elsevier, 2010:84-85.
[3] 金大玮, 李建桥, 党兆龙, 等. 滑转条件下月球车轮沉陷模型研究[J]. 航空学报, 2013, 34(5):1215-1221. JIN D W, LI J Q, DANG Z L, et al. Study on model for sinkage of lunar rover wheel under the condition of slip[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5):1215-1221(in Chinese).
[4] 崔平远, 徐瑞, 朱圣英, 等. 深空探测器自主技术发展现状与趋势[J]. 航空学报, 2014, 35(1):13-28. CUI P Y, XU R, ZHU S Y, et al. State of the art and development trends of on-board autonomy technology for deep space explorer[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1):13-28(in Chinese).
[5] 徐文福, 梁斌, 李成, 等. 空间机器人微重力模拟实验系统研究综述[J]. 机器人, 2009, 31(1):88-96. XU W F, LIANG B, LI C, et al. A review on simulated micro-gravity experiment systems of space robot[J]. Robot, 2009, 31(1):88-96(in Chinese).
[6] KURODA Y, TESHIMA T, SATO Y, et al. Mobility performance evaluation of planetary rover with similarity model experiment[C]//2004 IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE Press, 2004:2098-2103.
[7] WONG J Y. Predicting the performances of rigid rover wheels on extraterrestrial surfaces based on test results obtained on earth[J]. Journal of Terramechanics, 2012, 49(1):49-61.
[8] WONG J Y, KOBAYASHI T. Further study of the method of approach to testing the performance of extraterrestrial rovers/rover wheels on earth[J]. Journal of Terramechanics, 2012(in press).
[9] 江磊, 郭建娟, 陈传海. 基于相似理论的月球车牵引性能模型试验[J]. 中国机械工程, 2009, 23(20):2828-2831. JIANG L, GUO J J, CHEN C H. Scaling model experiment of lunar rover's mobility performance based on similarity model theory[J]. China Mechanical Engineering, 2009, 23(20):2828-2831(in Chinese).
[10] 李萌, 高峰, 孙鹏, 等. 基于相似理论的月球车月面牵引性能预测[J]. 北京航空航天大学学报, 2013, 39(2):230-234. LI M, GAO F, SUN P, et al. Prediction of lunar rover's moon tractive performance based on similitude theory[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(2):230-234(in Chinese).
[11] REINA G, OJEDA L, MILELLA A, et al. Wheel slippage and sinkage detection for planetary rovers[J]. IEEE/ASME Transactions on Mechatronics, 2006, 11(2):185-195.
[12] LYASKO M. Slip sinkage effect in soil-vehicle mechanics[J]. Journal of Terramechanics, 2010, 47(1):21-31.
[13] 李建桥, 黄晗, 王颖, 等. 松软地面机器系统研究进展[J]. 农业机械学报, 2015, 46(5):130-145. LI J Q, HUANG H, WANG Y, et al. Development on research of soft-terrain machine systems[J].Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(5):130-145(in Chinese).
[14] GAO H B, GUO J L, DING L, et al. Longitudinal skid model for wheels of planetary exploration rovers based on terramechanics[J]. Journal of Terramechanics, 2013, 50(5):327-343.
[15] DING L, GAO H B, DENG Z Q, et al. New perspective on characterizing pressure-sinkage relationship of terrains for estimating interaction mechanics[J]. Journal of Terramechanics, 2014, 52(2):57-76.
[16] TAHERI S, SANDU C, TAHERI S, et al. A technical survey on terramechanics models for tire-terrain interaction used in modeling and simulation of wheeled vehicles[J]. Journal of Terramechanics, 2015, 57(1):1-22.
[17] 丁亮亮, 肖杰, 宗魏, 等. 与沉陷相关联的星球车挂钩牵引力模型研究[J]. 农业机械学报, 2014, 45(12):37-42. DING L L, XIAO J, ZONG W, et al. Drawbar pull model of planetary rover associated with subsidence[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(12):37-42(in Chinese).
[18] IAGNEMMA K, KANG S, SHIBLY H, et al. Online terrain parameter estimation for wheeled mobile robots with application to planetary rovers[J]. IEEE Transactions on Robotics, 2004, 20(5):921-927.
[19] SHIBLY H, IAGNEMMA K, DUBOWSKY S. An equivalent soil mechanics formulation for rigid wheels in deformable terrain, with application to planetary exploration rovers[J]. Journal of Terramechanics, 2005, 42(1):1-13.
[20] 王洋, 李建桥, 党兆龙, 等. 松散地面上车辙表面的非接触式激光测量[J]. 农业机械学报, 2013, 44(7):264-268. WANG Y, LI J Q, DANG Z L, et al. Non-contact laser measurement of rutting surface on loose ground[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(7):264-268(in Chinese).
[21] DING L, GAO H B, DENG Z Q, et al. Experimental study and analysis on driving wheels' performance for planetary exploration rovers moving in deformable soil[J]. Journal of Terramechanics, 2011, 48(1):27-45.
[22] 邹猛, 李建桥, 李因武, 等. 刚性轮-月壤相互作用预测模型及试验研究[J]. 农业工程学报, 2007, 23(12):119-123. ZOU M, LI J Q, LI Y W, et al. Prediction model and experimental study on the interaction of rigid wheel and lunar soil[J]. Chinese Society for Agricultural Machinery, 2007, 23(12):119-123(in Chinese).
[23] IIZUKA K, SATO Y, KURODA Y, et al. Experimental study of wheeled forms for lunar rover on slope terrain[C]//9th IEEE International Workshop on Advanced Motion Control. Piscataway, NJ:IEEE Press, 2006:266-271.

文章导航

/