材料工程与机械制造

基于虚拟控制面约束的机匣类零件工序模型建立方法

  • 韩飞燕 ,
  • 张定华 ,
  • 张莹 ,
  • 吴宝海
展开
  • 西北工业大学 现代设计与集成制造技术教育部重点实验室, 西安 710072
韩飞燕 女, 博士研究生。主要研究方向: 复杂曲面的计算机辅助几何设计及多坐标数控加工理论。 E-mail: hanfeiyan@126.com;张定华 男, 博士, 教授, 博士生导师。主要研究方向: 高速切削工艺、多坐标数控加工理论、叶片叶盘类零件的高效精密数控加工及无损检测。 Tel: 029-88493232-411 E-mail: dhzhang@nwpu.edu.cn;张莹 女, 博士, 助理研究员。主要研究方向: 自由曲面多轴加工、智能加工。 E-mail: 47635964@qq.com;吴宝海 男, 博士, 副教授, 硕士生导师。主要研究方向: 自由曲面多轴加工、智能加工。 E-mail: wubaohai@nwpu.edu.cn

收稿日期: 2015-07-10

  修回日期: 2015-08-02

  网络出版日期: 2015-08-04

基金资助

国家“973”计划 (2013CB035802); 国家自然科学基金 (51305353)

A method of generate intermediate process models for casing parts based on virtual control surface constraints

  • HAN Feiyan ,
  • ZHANG Dinghua ,
  • ZHANG Ying ,
  • WU Baohai
Expand
  • The Key Laboratory of Contemporary Design and Integrated Manufacturing Technology, Ministry of Education, Northwestern Polytechnical University, Xi'an 710072

Received date: 2015-07-10

  Revised date: 2015-08-02

  Online published: 2015-08-04

Supported by

National Basic Research Program of China (2013CB035802); National Natural Science Foundation of China (51305353)

摘要

在多岛屿特征机匣类零件的数控加工中,建立准确的加工工序模型是实现该类零件智能加工的关键技术。为了获得多岛屿特征机匣类零件准确的加工工序模型,提出了一种基于虚拟控制面约束的机匣类零件工序模型建立方法。首先,根据多岛屿特征机匣类零件的加工特征对建模过程中虚拟控制面约束的引入进行了分析,并结合虚拟控制面约束思想给出了拉格朗日超限插值的建模理论;然后,结合机匣类零件的几何特征确定了虚拟控制面的分布位置和几何形状的计算方法,在此基础上根据虚拟控制面建模理论构造了中间变形曲面,依据切削深度约束确定了工序模型,并对其进行了轨迹规划;最后,在一类多岛屿特征的机匣零件上对算法进行了验证,结果表明,本文方法能够根据机匣零件加工特征分布情况有效地控制工序模型的几何形状,避免了同时处理多个加工特征所导致的工序曲面过早趋于复杂现象,为多岛屿特征机匣类零件的数控加工提供有效的工序模型,一定程度上降低了该类零件数控加工的工艺规划难度。

本文引用格式

韩飞燕 , 张定华 , 张莹 , 吴宝海 . 基于虚拟控制面约束的机匣类零件工序模型建立方法[J]. 航空学报, 2015 , 36(10) : 3465 -3474 . DOI: 10.7527/S1000-6893.2015.0218

Abstract

In numerical control (NC) machining of a multi-island casing part, establishing accurate machining process model is a key technology to realize intelligent processing of such parts. In order to obtain accurate machining process model of a multi-island casing parts, a method based on virtual control surface constraints to structure process models of a casing part is proposed. Firstly, the introduction of virtual control surface constraints in modeling process is analyzed according to machining characteristics of the multi-island casing parts, and the Lagrange transfinite interpolation modeling theory is given by combining the idea of virtual control surface constraints. Then according to geometrical characteristics of the casing parts, the algorithm for calculating the distribution position and geometric shape of the virtual control surfaces is determined; on this basis, according to the modeling theory of virtual control surface to structure the middle surface, the process model according to cutting depth constraint and plan the tool path for it is determined. Finally, a validation is conducted on a multi-island casing part. The result shows that the proposed method is able to control the geometry of process model effectively according to the distribution of machining characteristics, avoid the geometry of process surface prematurely tending to be complicated caused by handling multiple processing characteristics simultaneously and provide some effective process models for multi-island casing parts in NC machining; to some extent, the difficulty of the process planning for a multi-island casing parts is reduced.

参考文献

[1] Duncan J P, Mair S G. Sculptured surfaces in engineering and medicine[M]. Cambridge: Cambridge University Press, 1983: 126-130.
[2] Cao L X, Gong H, Liu J. Research on contact problem of surfaces and contact characteristics of offset surfaces[J]. Journal of Dalian University of Technology, 2007, 47(1): 39-44 (in Chinese). 曹利新, 宫虎, 刘健. 曲面接触问题及其等距面接触特性研究[J]. 大连理工大学学报, 2007, 47(1): 39-44.
[3] Yue Y, Jia J. Computing offsets of NURBS curve and surface[J]. Advanced Materials Research, 2012, 542: 537-540.
[4] Satoh N, Matsuyama K, Konno K, et al. High-quality approximation technique for two G1-continuous offset surfaces[J]. Computer-Aided Design and Applications, 2014, 11(1): 78-89.
[5] Saito T, Takahashi T. NC machining with G-buffer method[J]. Computer Graphics, 1991, 25(4): 207-216.
[6] Choi B K, Kim D H, Jerard R B. C-space approach to tool-path generation for die and mould machining[J]. Computer-Aided Design, 1997, 29(9): 657-669.
[7] Yan G R. Numerical control machining based on a stock-remaining model[D]. Beijing: Beihang University, 2001 (in Chinese). 闫光荣. 基于留量模型的数控加工[D]. 北京: 北京航空航天大学, 2001.
[8] Chen S, Yan G R. The intelligent machining based on stock-remaining model[J]. Computer Aided Engineering, 2000, 9(3): 25-32 (in Chinese). 陈杉, 闫光荣. 基于留量模型的智能加工[J]. 计算机辅助工程, 2000, 9(3): 25-32.
[9] Liu Y F, Ke Y L, Wang Q C, et al. Research on reverse engineering technology based on features[J]. Computer Integrated Manufacturing Systems, 2006, 12(1): 32-37 (in Chinese). 刘云峰, 柯映林, 王秋成, 等. 基于特征的反求工程技术研究[J]. 计算机集成制造系统, 2006, 12(1): 32-37.
[10] Zhang Y. Research for key techniques of adaptive numerical control machining for aero-engine blades[D]. Xi'an: Northwestern Polytechnical University, 2011 (in Chinese). 张莹. 叶片类零件自适应数控加工系统关键技术研究[D]. 西安: 西北工业大学, 2011.
[11] Lin X J, Chen Y, Wang Z W, et al. Model restructuring about leading edge and tailing edge of precision forging blade for adaptive machining[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5): 1695-1703 (in Chinese). 蔺小军, 陈悦, 王志伟, 等. 面向自适应加工的精锻叶片前后缘模型重构[J]. 航空学报, 2015, 36(5): 1695-1703.
[12] Zhang H, Liu H C, Zhang S W, et al. Reverse generation technology 3D intermediate procedure model for complex parts[J]. Computer Integrated Manufacturing Systems, 2015, 21(5): 1216-1221 (in Chinese). 张辉, 刘华昌, 张胜文, 等. 复杂零件三维中间工序模型逆向生成技术[J]. 计算机集成制造系统, 2015, 21(5): 1216-1221.
[13] DeCarlo D, Gallier J. Topological evolution of surfaces[J]. Graphics Interface, 1996, 96: 194-203.
[14] Lazarus F, Verroust A. Three-dimensional metamorphosis: A survey[J]. The Visual Computer, 1998, 14(8-9): 373-389.
[15] Lefebvre P, Lauwers B. 3D morphing for generating intermediate roughing levels in multi-axis machining[J]. Computer-Aided Design and Applications, 2005, 2(1-4): 115-123.
[16] Behera A K, Lauwers B, Duflou J R. Tool path generation for single point incremental forming using intelligent sequencing and multi-step mesh morphing techniques[J]. Key Engineering Materials, 2013, 554-557: 1408-1418.
[17] Han S R. New unified machining process planning using morphing technology[D]. California: University of California Los Angeles, 2011.
[18] Han S R, Yang D C H. Volume interior parameterization for automated unified machining process of freeform surfaces[M]. Berlin: Springer Berlin Heidelberg, 2012: 577-584.
[19] Huang B. A unified approach for integrated computer-aided design and manufacturing[D]. California: University of California Los Angeles, 2013.
[20] Zhang Z, Lin S L, Zhu Q D, et al. Genetic collision avoidance planning algorithm for irregular shaped object with kinematics constraint[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4): 1348-1358 (in Chinese). 张智, 林圣琳, 朱齐丹, 等. 考虑运动学约束的不规则目标遗传避碰规划算法[J]. 航空学报, 2015, 36(4): 1348-1358.

文章导航

/