来流条件对SFRJ燃速及自持燃烧性能的影响
收稿日期: 2015-06-02
修回日期: 2015-07-30
网络出版日期: 2015-08-03
Effect of inlet flow condition on regression rate and self-sustained combustion of solid fuel ramjet
Received date: 2015-06-02
Revised date: 2015-07-30
Online published: 2015-08-03
为了研究来流条件对固体燃料燃速以及自持燃烧性能的影响规律,采用3阶单调迎风格式(MUSCL)重构方法,AUSMPW+通量分裂格式,k-w剪切应力输运(SST)湍流模型,7组分3反应有限速率化学反应模型以及2阶矩湍流燃烧模型,编制了二维轴对称湍流燃烧仿真程序。仿真结果显示:来流质量流率和总温的增加会提高燃速,温度和质量通量的影响指数大约为0.95~1.00和0.67;来流条件影响燃速的主要机理是壁面附近温度和湍流黏性的变化,其中湍流黏性是主要影响因素;随着质量流率的增加,特征速度逐渐降低,当入口马赫数接近1时,特征速度大约为850 m/s,固体燃料将无法自持燃烧。
巩伦昆 , 陈雄 , 周长省 , 李映坤 , 朱敏 . 来流条件对SFRJ燃速及自持燃烧性能的影响[J]. 航空学报, 2016 , 37(5) : 1428 -1439 . DOI: 10.7527/S1000-6893.2015.0212
In order to investigate the influence of inlet flow condition on regression rate and self-sustained combustion of solid fuel ramjet, a 2d axisymmetric turbulent flow and combustion program is developed. The equation is solved using MUSCL reconstruction method and AUSMPW+ flux splitting technique, with k-w shear stress transport (SST) turbulence model, 7 species/3 reaction kinetics finite rate model and second-order moment turbulence-chemistry model. The simulation results show that the increases of air mass rate and total temperature enhance the regression rate and the exponents for them are 0.95-1.00 and 0.67. The variation of regression rate for different inlet flow conditions is caused by the variation of temperature and turbulent viscosity while turbulent viscosity is the predominant factor. Characteristic velocity decreases with the increase of air mass rate. The characteristic velocity is about 850 m/s and combustion could not sustain when the Mach number at inlet reaches about 1.
[1] SCHULTE G. Fuel regression and flame stabilization studies of solid-fuel ramjets[J]. Journal of Propulsion and Power,1986, 2(4):301-304.
[2] ELANDS P J M, KORTING P G, WIJCHERS T, et al. Comparison of combustion experiments and theory in polyethylene solid fuel ramjets[J]. Journal of Propulsion and Power, 1990, 6(6):732-739.
[3] NETZER A, GANY A. Burning and flameholding characteristics of a miniature solid fuel ramjet combustor[J]. Propellants, Explosives, Pyrotechnics, 1991, 7(3):357-363.
[4] FERREIRA J G, CARVALHO J A, SILVA M G. Experimental investigation of polyethylene combustion in a solid fuel ramjet:AIAA-1996-2698[R]. Reston:AIAA,1996.
[5] NETZER D W. Modeling solid-fuel ramjet combustion[J]. Journal of Spacecraft and Rockets, 1977, 14(12):762-766.
[6] STEVENSON C A, NETZER D W. Primitive variable model applications to solid-fuel ramjet combustion[J]. Journal of Spacecraft and Rockets, 1981, 18(1):89-94.
[7] ZVULONI R, LEVY Y, GANY A. Investigation of a small solid fuel ramjet combustor[J]. Journal of Propulsion and Power, 1989, 5(3):269-275.
[8] 郭健.固体燃料冲压发动机工作过程理论与试验研究[D]. 长沙:国防科学技术大学, 2007. GUO J. Theoretical and experimental investigation on the working process of solid fuel ramjet[D]. Changsha:National University of Defense Technology, 2007(in Chinese).
[9] 夏强. 固体燃料冲压发动机工作过程研究[D]. 南京:南京理工大学, 2011. XIA Q. Investigation on the working process of solid fuel ramjet[D]. Nanjing:Nanjing University of Science and Technology, 2011(in Chinese).
[10] 成红刚. 固体燃料冲压发动机燃烧性能数值仿真及试验研究[D]. 南京:南京理工大学, 2013. CHENG H G. Numerical simulation and experimental research on combustion characteristics of solid fuel ramjet[D]. Nanjing:Nanjing University of Science and Technology, 2013(in Chinese).
[11] 谢爱元, 武晓松. 外侧面燃烧固体燃料冲压发动机燃烧室流场的数值研究[J]. 推进技术, 2014, 35(7):956-964. XIE A Y, WU X S. Numerical simulation on flow field of solid fuel ramjet combustion chamber with outboard burning[J]. Journal of Propulsion Technology, 2014, 35(7):956-964(in Chinese).
[12] ELANDS P, DIJSWIJK F, ZANDBERGEN B. Experimental and computational flammability limits in a solid fuel ramjet:AIAA-1990-1964[R]. Reston:AIAA, 1990.
[13] LIOU T M, LIEN W Y, HWANG P W. Flammability limits and probability density functions in simulated solid-fuel ramjet combustors[J]. Journal of Propulsion and Power, 1997, 13(5):643-650.
[14] LI Y, TAO T. Resolving the shock-induced combustion by an adaptive mesh redistribution method[J]. Journal of Computational Physics, 2007, 224(2):1598-1605.
[15] 陈军. 火箭发动机燃烧基础[M]. 南京:南京理工大学出版社, 2011:124-132. CHEN J. Combustion fundamental of solid rocket[M]. Nanjing:Nanjing University of Science and Technology Press, 2011:124-132(in Chinese).
[16] VIESER W, EACH T, MENTER F R. Heat transfer predictions using advanced two-equation turbulence models:CFX-VAL10/0602[R]. Oxfordshire:AEA Technology, 2002.
[17] STOLIAROV S I, WALTERS R N. Determination of the heats of gasification of polymers using differential scanning calorimetry[J]. Polymer Degradation and Stability, 2008, 93(2):422-427.
[18] BIANCHI D, NASUTI F, ONOFRI M. Radius of curvature effects on throat thermochemical erosion in solid rocket motors[J]. Journal of Spacecraft and Rockets, 2015, 52(2):320-330.
[19] GASCOIN N, FAU G, GILLARD P. Flash pyrolysis of high density polyethylene:AIAA-2013-3833[R]. Reston:AIAA, 2013.
[20] 王兰. 超燃冲压发动机整机非结构网格并行数值模拟[D]. 绵阳:中国空气动力研究与发展中心, 2007. WANG L. Parallel nemerical simulations of the whole scramjet engine flowfields on unstructured grids[D]. Mianyang:Chinese Aerodynamics Research and Development Center, 2007(in Chinese).
[21] 周力行.多相湍流反应流体力学[M]. 北京:国防工业出版社, 2002:185-189. ZHOU L X. Multiphase turbulent reaction fluid dynamics[M]. Beijing:National Defense Industry Press, 2002:185-189(in Chinese).
[22] KIM K H, KIM C, RHO O H. Methods for the accurate computations of hypersonic flows I. AUSMPW+Scheme[J]. Journal of Computational Phyics, 2001, 174(1):38-80.
[23] EVANS J S, SCHEXNAYDER C J. Influence of chemical kinetics and unmixedness on burning in supersonic hydrogen flames[J]. AIAA Journal, 1980, 18(2):188-193.
[24] LEHR H F. Experiment on shock-induced combustion[J]. Astronautica Acta, 1972, 17:589-597.
[25] 成红刚, 陈雄, 朱国强, 等. PE在固体燃料冲压发动机中的燃烧特性实验研究[J]. 固体火箭技术, 2014,37(2):204-208. CHENG H G, CHEN X, ZHU G Q, et al. Experimental investigation on combustion characteristic of PE in solid fuel ramjet[J]. Journal of Solid Rocket Technology, 2014, 37(2):204-208(in Chinese).
[26] SCHULTE G, PEIN R, HOGL A. Temperature and concentration measurements in a solid fuel ramjet combustion chamber[J]. Journal of Propulsion and Power, 1987, 3(2):114-120.
[27] KORTING P, VANDER GELD C, VOS B, et al. Combustion of PMMA in a solid fuel ramjet:AIAA-1986-1401[R]. Reston:AIAA,1986.
/
〈 |
|
〉 |