流体力学与飞行力学

2.4 m跨声速风洞虚拟飞行试验技术研究

  • 赵忠良 ,
  • 吴军强 ,
  • 李浩 ,
  • 周为群 ,
  • 毛代勇 ,
  • 杨海泳
展开
  • 中国空气动力研究与发展中心高速空气动力研究所, 绵阳 621000
吴军强,男,硕士,研究员,硕士生导师。主要研究方向:大迎角空气动力学。Tel:0816-2462009,E-mail:cardc_wujunqiang@163.com

收稿日期: 2015-03-09

  修回日期: 2015-07-01

  网络出版日期: 2015-07-31

基金资助

国家自然科学基金(91216203);国家"973"计划(61389)

Investigation of virtual flight testing technique based on 2.4 m transonic wind tunnel

  • ZHAO Zhongliang ,
  • WU Junqiang ,
  • LI Hao ,
  • ZHOU Weiqun ,
  • MAO Daiyong ,
  • YANG Haiyong
Expand
  • High Speed Aerodynamics Institue of China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2015-03-09

  Revised date: 2015-07-01

  Online published: 2015-07-31

Supported by

National Natural Science Foundation of China(91216203);National Basic Research Program of China(61389)

摘要

风洞虚拟飞行试验(WTBVFT)技术是在风洞环境中对飞行器机动运动最逼真模拟的物理过程,它不仅可以更加有效模拟飞行器的机动运动过程、获取气动/运动耦合特性和揭示气动/运动耦合机理,而且能够实现气动/飞行力学集成的相容性研究。鉴于此,简要介绍了2.4 m跨声速WTBVFT技术,包括:相似准则和模拟方法、试验模型支撑技术、气动/运动参数测试技术和操纵控制技术等,并开展了典型导弹模型开环控制、姿态角闭环控制、加速度闭环控制、俯仰/滚转耦合与解耦控制以及靶试弹道验证等WTBVFT。研究结果表明:WTBVFT系统运动灵活,气动参数和运动参数测量结果准确可靠,能够有效模拟导弹实际飞行过程,具备闭环控制与耦合运动解耦控制的试验模拟能力,初步形成了气动/飞行力学一体化试验研究能力。同时,该研究也为开展控制方法优化与验证、数据修正与应用以及发展复杂构型的WTBVFT奠定了技术基础。

本文引用格式

赵忠良 , 吴军强 , 李浩 , 周为群 , 毛代勇 , 杨海泳 . 2.4 m跨声速风洞虚拟飞行试验技术研究[J]. 航空学报, 2016 , 37(2) : 504 -512 . DOI: 10.7527/S1000-6893.2015.0196

Abstract

The wind tunnel-based virtual flight testing(WTBVFT) is an experimental technique, which is used to simulate vehicles' maneuvering movements in wind tunnels efficiently, to obtain the coupling characteristics between aerodynamic and kinetic behavior and to discover the coupling mechanism, but also to implement the consistent research about the integration of aerodynamics and flight mechanics. In this paper, the experimental techniques of WTBVFT platform in 2.4 m transonic wind tunnel are introduced briefly that consist of the similarity law and simulation methods, the supporting means for test models, the measuring skills of aerodynamic parameters and motion parameters, as well as the drive and control techniques, and then some experiments of typical missiles' model using WTBVFT are presented, such as open-loop control tests, closed-loop control tests for angle of attack and normal acceleration, pitching and rolling coupled motion and their decoupled control tests, and verification tests of real-flight. The tests' results show that the motions of WTBVFT platform are very agile, the measurement tests of aerodynamic parameters and the motion parameters are credible, and WTBVFT platform is able to repeat the real-flight of missile effectively and has the capability to conduct closed-control and decoupled control tests. WTBVFT has the primarily experimental ability for integrated simulation of aerodynamics and flight dynamics for missile model, and provides a technical basis for verification and optimization of flight control law, data correction and application, and development of WTBVFT for flight vehicles with complex shape.

参考文献

[1] ERICSSON L E, BEYERS M E. Conceptual fluid/motion coupling in the Herbst supermaneuver[J]. Journal of Aircraft, 1997, 34(3):271-277.
[2] ERICSSON L E, BEYERS M E. Nonlinear rate and amplitude effects on a generic combat aircraft model[J]. Journal of Aircraft, 2000, 37(2):207-213.
[3] NELSON R C, PELLETIER A. The unsteady aerodynamics of slender wings and aircraft undergoing large amplitude maneuvers[J]. Progress in Aerospace Sciences, 2003, 39(3):185-248.
[4] GREENWELL D T. A review of unsteady aerodynamic modelling for flight dynamics of manoeuvrable aircraft:AIAA-2004-5276[R]. Reston:AIAA, 2004.
[5] CHANBERS J R, HALL R M. History review of uncommanded lateral-directional mitions at transonic conditons[J]. Journal of Aircraft, 2004, 41(3):436-447.
[6] RATLIFF C L, MARQUART E J. Bridging the gap between ground and flight tests:virtual flight testing(VFT):AIAA-1995-3875[R]. Reston:AIAA, 1995.
[7] RATLIFF C L, MARQUART E J. An assessment of a potential test technique:Virtual flight testing(VFT):AIAA-1995-3415[R]. Restion:AIAA, 1995.
[8] GEBERT G, KELLY J, LOPEZ J. Wind tunnel based virtual flight testing:AIAA-2000-0829[R]. Reston:AIAA, 2000.
[9] GEBERT G, KELLY J, LOPEZ J. Virtual flight testing in a ground test facility:AIAA-2000-4019[R]. Reston:AIAA, 2000.
[10] LAWRENCE F C, MILLS B H. Status update of the AEDC wind tunnel virtual flight testing development program:AIAA-2002-0168[R]. Reston:AIAA, 2002.
[11] MAGILL J C, WEHEF S D. Initial test of a wire suspension mount for missile virtual flight testing:AIAA-2002-0169[R]. Reston:AIAA, 2002.
[12] MAGILL J C, CATALDI P, MORENCY J R, et al. Design of a wire suspension system for dynamic testing in AEDC 16T:AIAA-2003-0452[R]. Reston:AIAA, 2003.
[13] MAGILL J C, CATALDI P, MORENCY J R, et al. Active yaw control with a wire suspension system for dynamic wind tunnel testing:AIAA-2005-1295[R]. Reston:AIAA, 2005.
[14] MAGILL J C, CATALDI P, MORENCY J R, et al. Demonstration of a wire suspension for wind-tunnel virtual flight testing[J]. Journal of Spacecraft and Rockets, 2009, 46(3):624-633.
[15] PATTINSON J, LOWENBERG M H, GOMAN M G. A multi-degree-of-freedom rig for the wind tunnel determination of dynamic data:AIAA-2009-5727[R]. Reston:AIAA, 2009.
[16] 胡静, 李潜. 风洞虚拟飞行技术初步研究[J]. 实验流体力学, 2010, 24(1):95-99. HU J, LI Q. Primary investigation of the virtual flight testing techniques in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(1):95-99(in Chinese).
[17] 谢志江, 孙小勇, 孙海生, 等. 低速风洞动态试验的高速并联机构设计及动力学分析[J]. 航空学报, 2013, 34(3):487-494. XIE Z J, SUN X Y, SUN H S, et al. Mechanism design and dynamics analysis of high speed parallel robot for dynamic test in low speed wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3):487-494(in Chinese).
[18] 孙海生, 岑飞, 聂博文, 等. 水平风洞模型自由飞试验技术研究现状及展望[J]. 实验流体力学, 2011, 25(4):103-108. SUN H S, CEN F, NIE B W, et al. Present research status and prospective application of wind tunnel free-flight test technique[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(4):103-108(in Chinese).
[19] 李浩. 风洞虚拟飞行试验相似准则和模拟方法研究[D]. 绵阳:中国空气动力研究与发展中心, 2012. LI H. Study on the similarity criteria and simulation method of the wind tunnel based virtual flight testing[D]. Mianyang:China Aerodynamics Research and Development Center, 2012(in Chinese).
[20] 李浩, 赵忠良, 范召林. 风洞虚拟飞行试验模拟方法研究[J]. 实验流体力学, 2011, 25(6):72-76. LI H, ZHAO Z L, FAN Z L. Simulation method for wind tunnel based virtual flight testing[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(6):72-76(in Chinese).
[21] 耿玺, 史志伟. 面向过失速机动的风洞动态试验相似准则探讨[J]. 实验流体力学, 2011, 25(3):41-45. GENG X, SHI Z W. Similarity criterion of the wind tunnel test for the post-stall maneuver[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(3):41-45(in Chinese).
[22] 陶洋, 范召林, 吴继飞. 基于CFD的方形截面导弹纵向虚拟飞行模拟[J]. 力学学报, 2010, 42(2):169-176. TAO Y, FAN Z L, WU J F. CFD based virtual flight simulation of square crosssection missile with control in longitudinal flight[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(2):169-176(in Chinese).
[23] 达兴亚, 陶洋, 赵忠良. 基于预估校正和嵌套网格的虚拟飞行数值模拟[J]. 航空学报, 2012, 33(6):977-983. DA X Y, TAO Y, ZHAO Z L. Numerical simulation of virtual flight based on prediction-correction coupling method and chimera grid[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(6):977-983(in Chinese).
[24] 向光伟, 谢斌, 赵忠良, 等. 2.4 m×2.4 m跨声速风洞虚拟飞行试验天平研制[J]. 实验流体力学, 2014, 28(1):65-69. XIANG G W, XIE B, ZHAO Z L, et al. Development of virtual flight test balance for 2.4 m×2.4 m transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(1):65-69(in Chinese).

文章导航

/