流体力学与飞行力学

涡破裂诱导的垂尾抖振气动弹性分析

  • 赵子杰 ,
  • 高超 ,
  • 张正科
展开
  • 西北工业大学航空学院, 西安 710072
赵子杰,男,博士研究生。主要研究方向:跨声速空气动力学,流动控制。E-mail:zhaozijie84@gmail.com;高超,男,博士,教授,博士生导师。主要研究方向:试验空气动力学,计算空气动力学。Tel:029-88491224-22,E-mail:gaochao@nwpu.edu.cn

收稿日期: 2015-05-06

  修回日期: 2015-06-17

  网络出版日期: 2015-07-25

基金资助

重点实验室预研基金(9140C420301110C42)

Aeroelastic analysis of vertical tail buffeting induced by vortex breakdown

  • ZHAO Zijie ,
  • GAO Chao ,
  • ZHANG Zhengke
Expand
  • School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2015-05-06

  Revised date: 2015-06-17

  Online published: 2015-07-25

Supported by

Key-Levorotary Pre-Research Foundation of China(9140C420301110C42)

摘要

通过试验方法分析了三角翼前缘分离涡与垂尾抖振之间的关系,深入研究了尾迹流动对垂尾抖振各阶模态的激励作用。计算得到了垂尾模型固有频率及各阶模态。在风洞试验中,应用激光片光烟流场显示技术,得到了三角翼模型在风速为30 m/s下,各迎角的涡结构;使用加速度传感器测量了垂尾翼根和翼梢的抖振响应;使用热线风速仪测量了垂尾翼根和翼梢位置的脉动速度分量。结果表明:前缘涡破裂后产生的高湍流度的尾迹是垂尾抖振的直接原因,抖振边界与涡破裂的强度和位置有关;涡破裂后尾迹与垂尾产生共振,使得抖振加速度响应频率与垂尾固有频率一致;涡破裂后,在较小迎角下,尾迹对垂尾的高频振动模态的激励较为明显,在较大迎角下,涡破裂流动对垂尾低频振动模态的激励加强了。

本文引用格式

赵子杰 , 高超 , 张正科 . 涡破裂诱导的垂尾抖振气动弹性分析[J]. 航空学报, 2016 , 37(2) : 491 -503 . DOI: 10.7527/S1000-6893.2015.0188

Abstract

The relationship between breakdown vortex and vertical tail buffeting is analyzed by experiment. The stimulation effects which the wake of breakdown vortex exerts on various modes of vertical tail buffeting are investigated in detail. The normal modes and natural frequencies of vertical tail model are calculated by numerical method firstly. Then, the vortex structure of delta wing at different angles of attack is recorded by laser sheet flow visualization technique at 30 m/s. The buffeting responses of vertical tail tip and root are measured by accelerometer. The oscillation velocity of the wake is measured using the hot-wire anemometer. The results show that the vertical tail buffeting originates from the breakdown vortex. The buffet boundary is related to the location and intensity of the vortex breakdown. The wake of the vortex resonates with the vertical tail and further reinforces the buffeting phenomenon. As a result, the buffeting frequencies are identical with natural frequencies of the tail structure. The broken-down vortex at relative low angles of attack generates high frequency vibration mode of the vertical tail whereas at high angles of attack gives rise to the low frequency vibration mode.

参考文献

[1] MAYORI A, ROCKWELL D. Interaction of a stream wise vortex with a thin plate:A source of turbulent buffeting[J]. AIAA Journal, 1994, 32(10):2022-2030.
[2] CANBAZOGLU S, LIN J C, WOLFE S, et al. Buffeting of fin-Distortion of incident vortex[J]. AIAA Journal, 1995, 33(11):2144-2150.
[3] LEE B H K. Vertical tail buffeting of fighter aircraft[J]. Progree Aerospace Sciences, 2000, 36(3):193-279.
[4] DUNCAN W, ELLIS D, SCRUTON C. First report on the general investigation of tail buffeting:R&M-1457[R]. British, London:British Aeronautical Research Committee, 1932.
[5] ZIMMERMAN N, FERMAN M, YURKOVICH R N. Prediction of tail buffet loads for design application:AIAA-1989-1378[R]. Reston:AIAA, 1989.
[6] FISHER D F, FRATE J H D, RICHWINE D M. In-flight flow visualization characteristics of the NASA F-18 high alpha research vehicle at high angles of attack:NASA TM 4193[R]. Ames:NASA Ames Research Center Dryden Fligh Research Facility, 1990.
[7] FERMAN M, HUTTSELL L, TURNER E. Experiments with tangential blowing to reduce buffet response on an F-15 model[J]. Journal of Aircraft, 2004, 41(4):903-910.
[8] LEE B H K, BROWN D, ZGELA M, et al. Wind tunnel investigation and flight tests of tail buffet on the CF-18 aircraft:DTIC Document ADP006218[R]. Canada Ottawa:National Aeronautical Establishment Ottawa, 1990.
[9] MARTIN C, GLAISTER M, MACLAREN L D, et al. Ross F/A-18 1/9th scale model tail buffet measurements:NASA TR-188[R]. Washington, D.C.:NASA, 1991.
[10] MABEY D. Measurements of fin buffeting on an 'F-18'model and derived interpretive hypothesis:DRA Bedford, Technical Memorandum Aero 2224[R]. British:Bedford, 1991.
[11] LEE B H K, MARINEAU-MES S. Investigation of the unsteady pressure fluctuations on an F/A-18 wing at high incidence[J]. Journal of Aircraft, 1996, 33(5):888-894.
[12] LEE B H K, MARINEAU-MES S. Load measurements on the leading-edge extension, wing, and body of an F/A-18[J]. Journal of Aircraft, 1998, 35(2):295-300.
[13] MOSES R W, PENDLETON E. A comparison of pressure measurements between a full-scale and a 1/6-Scale F/A-18 twin tail during buffet:NASA-TM-110282[R]. Washington, D.C.:NASA, 1996.
[14] MEYN L A, JAMES K D. Full-scale wind-tunnel studies of F/A-18 tail buffet[J]. Journal of Aircraft, 1996, 33(3):589-595.
[15] PETTIT C L, BROWN D L, Banford M P, et al. Full-scale wind-tunnel pressure measurements of an F/A-18 tail during buffet[J]. Journal of Aircraft, 1996, 33(6):1148-1156.
[16] BEAN D, LEE B H K. Correlation of F/A-18 buffeting from wind-tunnel and flight tests[J]. Journal of Aircraft, 1995, 32(6):1351-1358
[17] ELMEKAWY A, KANDIL O A, BAYSAL O. F/A-18 twin-tail buffet modeling using non-linear eddy viscosity models:AIAA-2014-2447[R]. Reston:AIAA, 2014.
[18] BARNES C J, VISBAL M R, GORDNIER R E. Investigation of aeroelastic effects in streamwise-oriented vortex/wing interactions:AIAA-2014-1281[R]. Reston:AIAA, 2014.
[19] LEMAY S P, LOVATO J A. Experimental investigation of the vortex-vertical tail interaction on an F-15:AIAA-1994-0070[R]. Reston:AIAA, 1994.
[20] BLACK C L, PATEL S R, ANDERSON W D. Low speed wind tunnel buffet testing on the F/A-22[J]. Journal of Aircraft, 2006, 43(4):879-885.
[21] BLACK C L, PATEL S R. Buffet fatigue sequence generation from F-22 flight test data using frequency domain methods:AIAA-2007-1765[R]. Reston:AIAA, 2007.
[22] POTOCZSKY A, MOSES R W. An analysis method to predict tail buffet loads of fighter aircraft:AIAA-2005-2291[R]. Reston:AIAA, 2005.
[23] WENTZ W H, Jr. Vortex-fin interaction on a fighter aircraft:AIAA-1987-2474[R]. Reston:AIAA, 1987.
[24] WOLFE S, CANBAZOGLU S, LIN J C, et al. Buffeting fins-An assessment of surface pressure loading[J]. AIAA Journal, 1995, 33(11):2232-2234.
[25] BEYERS M E, ERICSSON L. Why is LEX vortex breakdown on the F/A-18 configuration insensitive to Reynolds number:AIAA-2001-0690[R]. Reston:AIAA, 2011.
[26] MAYORI A, ROCKWELL D. Interaction of a streamwise vortex with a thin plate-A source of turbulent buffeting[J]. AIAA Journal, 1994, 32(10):2022-2029.
[27] MENKE M, GURSUL I. Unsteady nature of leading edge vortices[J]. Physics of Fluids, 1997, 9(10):2960-2966.
[28] GARG A, LEibovich S. Spectral characteristics of vortex breakdown flowfields[J]. Physics of Fluids, 1979, 22(11):2053-2064.
[29] GURSUL I. Unsteady flow phenomena over delta wings at high angle of attack[J]. AIAA Journal, 1994,32(2):225-231.
[30] GURSUL I, YANG H. On fluctuations of vortex breakdown location[J]. Physics of Fluids, 1995, 7(1):229-231.
[31] KIM Y, OZGOREN M, ROCKWELL D. Vortex breakdown-tail interaction[J]. AIAA Journal, 2003, 41(3):544-549.
[32] KIM Y, ROCKWELL D, LIAKOPOULOS A. Vortex buffeting of aircraft tail:Interpretation via proper orthogonal decomposition[J]. AIAA Journal, 2005, 43(3):550-559.
[33] HILL B, LEVINSKI O, WATMUFF J. Experimental investigation of generic buffet configuration:AIAA-2006-3485[R]. Reston:AIAA, 2006.
[34] 李劲杰, 杨青, 肖春生. 边条翼布局流场及其双垂尾抖振特性研究[J]. 航空学报, 2006, 27(3):395-398. LI J J, YANG Q, XIAO C S. Investigation of flow and twin-vertical tail buffet characteristics of leading-edge extension configuration[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(3):395-398(in Chinese).
[35] 吕志咏, 祝立国, 张明禄. 三角翼前缘涡破裂形式及特性研究[J]. 力学学报, 2006, 38(1):113-118. LU Z Y, ZHU L G, ZHANG M L. Study on some breakdown forms and characteristics of leading edge vortex over delta wings[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(1):113-118(in Chinese).
[36] LIN N, REED H L, SARIC W S. Effect of leading-edge geometry on boundary-layer receptivity to freestream sound[M]//Instability, Transition, and Turbulence. New York:Springer, 1992:421-440.
[37] 商霖. 基于ANSYS有限元分析的模态质量计算方法[J]. 导弹与航天运载技术, 2011(3):55-57. SHANG L. Modal mass computation based on ANSYS finite element analysis[J]. Missiles and Space Vehicles, 2011(3):55-57(in Chinese).
[38] GURSUL I. Review of unsteady vortex flows over slender delta wings[J]. Journal of Aircraft, 2005, 42(2):299-319.
[39] 冯亚南, 刘日之, 邢玉山. 双三角翼外翼前缘钝度对气动特性的影响[J]. 北京航空航天大学学报, 1993(1):57-61. FENG Y N, LIU R Z, XING Y S. The effect of outboard leading-edge bluntness of doube-delta wing on its aerodynamic characteristics[J]. Journal of Beijing University of Aeronautics and Astronautics, 1993(1):57-61(in Chinese).
[40] 李德葆, 陆秋. 工程振动试验分析[M]. 北京:清华大学出版社, 2004:250-251. LI D B, LU Q. Analysis of experiments in engineering vibration[M]. Beijing:Tsinghua University Press, 2004:250-251(in Chinese)., 1995, 33(11): 2232-4.
[25] Beyers ME, Ericsson L. Why is LEX vortex breakdown on the F/A-18 configuration insensitive to Reynolds number[C]. AIAA paper, 39th Aerospace Sciences Meeting and Exhibit, 2001: 690- 2001.
[26] Mayori A, Rockwell D. Interaction of a streamwise vortex with a thin plate - A source of turbulent buffet-ing[J]. AIAA Journal, 1994, 32(10): 2022-9.
[27] Menke M, Gursul I. Unsteady nature of leading edge vortices[J]. Physics of Fluids (1994-present), 1997, 9(10): 2960-6.
[28] Garg A, Leibovich S. Spectral characteristics of vortex breakdown flowfields[J]. Physics of Fluids (1958-1988), 1979, 22(11): 2053-64.
[29] Gursul I. Unsteady flow phenomena over delta wings at high angle of attack[J]. AIAA Journal, 1994,32(2): 225-31.
[30] Gursul I, Yang H. On fluctuations of vortex breakdown location[J]. Physics of Fluids , 1995, 7(1): 229-31.
[31] Kim Y, Ozgoren M, Rockwell D. Vortex Breakdown-Tail Interaction[J]. AIAA Journal, 2003, 41(3): 544-9.
[32] Kim Y, Rockwell D, Liakopoulos A. Vortex Buffeting of Aircraft Tail: Interpretation via Proper Orthogo-nal Decomposition[J]. AIAA Journal, 2005, 43(3): 550-9.
[33] Hill B, Levinski O, Watmuff J. Experimental investiga-tion of generic buffet configuration[C]. AIAA paper, 24th AIAA Applied Aerodynamics Conference, 2006: 2006-3485.
[34] Li J J, Yang Q, Xiao C S. Investigation of Flow and Twin-Vertical Tail Buffet Characteristics of Leading-Edge Extension Configuration. Acta Aeronautica Et As-tronautica Sinica, 2006(03): 395-398. (in Chinese)
李劲杰, 杨青, 肖春生. 边条翼布局流场及其双垂尾抖振特性研究[J]. 航空学报, 2006(03): 395-398.
[35] Lu Z, Zhu L G, Zhang M L. Study on some breakdown forms and characteristics of leading edge vortex over delta wings[J]. Chinese Journal of Theoretical and Ap-plied Mechanics, 2006(01): 113-118. (in Chinese)
吕志咏, 祝立国, 张明禄. 三角翼前缘涡破裂形式及特性研究[J]. 力学学报, 2006(01) : 113-118.
[36] Lin N, Reed H L, Saric W. Effect of leading-edge ge-ometry on boundary-layer receptivity to freestream sound[M]. Instability, Transition, and Turbulence. USA: Springer, 1992: 421-440.
[37] Shang L. Modal Mass Computation Based on ANSYS Finite Element Analysis. Missiles and Space Vehicles, 2011(03): 55-57. (in Chinese)
商霖. 基于ANSYS有限元分析的模态质量计算方法[J]. 导弹与航天运载技术, 2011(03): 55-57 .
[38] Gursul I. Review of unsteady vortex flows over slender delta wings[J]. Journal of Aircraft, 2005, 42(2): 299-319.
[39] Feng Y N, Liu R Z, Xing Y S. Journal of Beijing University of Aeronautics and Astronautics, 1993(01): 57-61. (in Chinese)
冯亚南, 刘日之, 邢玉山. 双三角翼外翼前缘钝度对气动特性的影响[J]. 北京航空航天大学学报, 1993(01): 57-61.
[40] Li D B, Lu Q. Analysis of Experiments in Engineering Vibration[M]. Beijin . Tsinghua University Press, 2004:250-251 (in Chinese)
李德葆, 陆秋. 工程振动试验分析[M]. 北京:清华大学出版社, 2004: 250-251.

文章导航

/