流体力学与飞行力学

基于当地变量的横流转捩预测模型的研究与改进

  • 史亚云 ,
  • 白俊强 ,
  • 华俊 ,
  • 杨体浩
展开
  • 1. 西北工业大学 航空学院, 西安 710072;
    2. 中国航空研究院, 北京 100012
史亚云,女,博士研究生。主要研究方向:转捩数值模拟方法。Tel:18792412472,E-mail:shiyayun_nwpu@163.com;白俊强,男,教授,博士生导师。主要研究方向:飞行器总体布局设计,部件气动力设计,多学科优化,计算流体力学理论和应用。Tel:029-88492694,E-mail:junqiang@nwpu.edu.cn;华俊,男,博士,教授,博士生导师。主要研究方向:飞行器气动设计,机翼防冰系统数值模拟,计算流体力学与控制系统耦合。E-mail:nuaj@cae.ac.cn;杨体浩,男,博士研究生。主要研究方向:飞行器气动设计,主动控制和气动弹性。E-mail:xiaoyaoyangtihao@163.com

收稿日期: 2015-04-01

  修回日期: 2015-06-27

  网络出版日期: 2015-07-17

基金资助

国家"973"计划(2014CB744804)

Study and modification of cross-flow induced transition model based on local variables

  • SHI Yayun ,
  • BAI Junqiang ,
  • HUA Jun ,
  • YANG Tihao
Expand
  • 1. School of Aerodynamics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Chinese Aeronautical Establishment, Beijing 100012, China

Received date: 2015-04-01

  Revised date: 2015-06-27

  Online published: 2015-07-17

Supported by

National Basic Research Program of China(2014CB744804)

摘要

Langtry和Menter提出的转捩预测模型需要改进以具备预测横流转捩的能力。当地变量Helicity参数可以指示边界层内的横流信息,因而可用来构造适用于复杂构型以及当代计算流体力学(CFD)并行计算的横流转捩预测模型。实现了基于Helicity参数的横流转捩预测模型,对于后掠角为45°的NLF(2)-0415无限展长后掠翼,模型能够预测不同雷诺数对横流转捩的影响,但是对6:1椭球的横流转捩预测结果与试验数据相差较多。针对实现的横流转捩预测模型的缺点,考虑横流速度因素进行改进。横流速度的求解经过简化近似可以当地求解,因而保证了改进的模型完全基于当地变量的优势。采用改进后的横流转捩预测模型分别对NLF(2)-0415机翼、6:1椭球以及DLR-F5机翼进行数值模拟,并与试验数据进行对比分析,结果显示改进后的横流转捩预测模型可以较为准确地捕捉横流转捩现象。

本文引用格式

史亚云 , 白俊强 , 华俊 , 杨体浩 . 基于当地变量的横流转捩预测模型的研究与改进[J]. 航空学报, 2016 , 37(3) : 780 -789 . DOI: 10.7527/S1000-6893.2015.0194

Abstract

The transition prediction model proposed by Langtry and Menter needs to be modified for predicting cross-flow induced transition. Local variable Helicity is found to be capable of indicating cross-flow information in the boundary layer, so it can be used to construct cross-flow transition prediction which is compatible with complex configuration and modern computational fluid dynamics(CFD) parallelized computation. The cross-flow transition prediction model based on Helicity parameter is realized and has the ability to capture the influence of different Reynolds numbers for infinite swept wing NLF(2)-0415 with sweep angle of 45°. However, the difference between the realized model result and experimental data for 6:1 prolate spheroid is large. In this paper, cross velocity factor is considered to modify the realized model aimed at improving the shortcoming of realized model. The solver of cross velocity is simplified and approximated for local calculation, which makes the modified cross-flow model retain the superiority of totally using only local variables. Finally, NLF(2)-0415 wing, 6:1 prolate spheroid and DLR-F5 wing are simulated by the modified model. The comparison between the simulation and experiment data indicates that the modified cross-flow transition prediction model can capture cross-flow induced transition phenomenon.

参考文献

[1] KRIMMELBEIN N, KRUMBEIN A. Automatic transition prediction for three-dimensional configurations with focus on industrial application[J]. Journal of Aircraft, 2011, 48(6):1877-1887.
[2] LANGTRY R B, MENTER F. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12):2894-2906.
[3] ARNAL D, CASALIS G. Laminar-turbulent transition prediction in three-dimensional fows[J]. Progress in Aerospace Sciences, 2000, 36(2):173-191.
[4] SEYFERT C, KRUMBEIN A. Correlation-based transition transport modeling for three-dimensional aerodynamic configurations[C]//50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2012:1-14.
[5] CHOI J H, KWON O J. Enhancement of a correlation-based transition turbulence model for simulating crossflow instability[C]//52nd Aerospace Sciences Meeting. Reston:AIAA, 2014:1-16.
[6] 徐家宽, 白俊强, 乔磊, 等. 横流不稳定性转捩预测模型研究[J]. 航空学报, 2015, 32(1):151-158. XU J K, BAI J Q, QIAO L, et al. Study of transition model for predicting crossflow instabilities[J]. Acta Aeronautica et Astronautica Sinica, 2015, 32(1):151-158(in Chinese).
[7] WATANABE Y, MISAKA T, OBAYASHI S. Application of crossflow transition criteria to local correlation-based transition model[C]//47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2009:1-13.
[8] KOHAMA Y, DAVIS S. A new parameter for predicting crossflow instability[J]. JSME International Journal, 1993, 36(1):80-85.
[9] MEDIDA S, BAEDER J D. A new crossflow transition onset criterion for rans turbulence models[C]//21st AIAA Computational Fluid Dynamics Conference. Reston:AIAA,2013:1-9.
[10] DAGENHART J R. Crossflow stability and transition experiments in a swept-wing flow:NASA TM NO.108650[R]. Washington, D.C.:NASA, 1992.
[11] MULLER C, HERBST F. Modeling of crossflow-induced transition based on:local variables[C]//6th European Conference on Computational Fluid Dynamics. Hannover:Computational Fluid Dynamics, 2014:1-8.
[12] SARIC W S, REED H L, WHITE E B. Stability and transition of three-dimensional boundary layers[J]. Annu Rev Fluid Mech, 2003, 35(1):413-440.
[13] IMAYAMA S. Experimental study of the rotating-disk boundary-layer flow:SE-10044[R]. Stockholm, Sweden:[s.n.], 2012.
[14] KOHAMA Y, SENDAI L. Some expectation on the mechanism of cross-flow instability in a swept wing flow[J]. Acta Mechanica, 1986, 66(1):21-38.
[15] HERBST F, FIALA A, SEUME J R. Modeling vortex generating jet-induced transition in low-pressure turbines[J]. Journal of Turbomachinery, 2013, 136(7):V06BT37A023.
[16] ROE P L. Approximate riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(1):1598-1605.
[17] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering application[J]. AIAA Journal, 1994, 32(8):1598-1605.
[18] LANGTRY R B. A correlation-based transition model using local variables for unstructured parallelized cfd codes[D]. Ottawa:Institut für Thermische Strümungsmaschinen und Maschinenlaboratorium, Universität Stuttgart, 2006.
[19] SARIC W, TAKAGI S, MOUSSEUX M. The asu unsteady wind tunnel and fundamental requirements for freestream turbulence measurements[C]//AIAA 26th Aerospace Sciences Meeting. Reston:AIAA, 1988:1-10.
[20] WANG L, FU S, CARNARIUS A, et al. A modular RANS approach for modelling laminar-turbulent transition in turbomachinery flows[J]. International Journal of Heat and Fluid Flow, 2012, 34(1):62-69.
[21] GRABE C, KRUMBEIN A. Extension of the γ-Reθt model for prediction of crossflow transition[C]//52nd Aerospace Sciences Meeting. Reston:AIAA, 2014:1-14.

文章导航

/