飞行器RCS近场测试技术研究进展与工程应用
收稿日期: 2015-02-06
修回日期: 2015-06-30
网络出版日期: 2015-07-10
Progress of aircraft RCS near field measurement and its application
Received date: 2015-02-06
Revised date: 2015-06-30
Online published: 2015-07-10
雷达散射截面(RCS)测试是隐身技术和目标特性研究的基础。无论是研究物体的电磁散射特性还是研制具有突防能力的隐身武器系统,RCS测试都具有非常重要的意义。通过RCS测试可以验证电磁散射计算的理论和方法,更重要的是,对部分飞行器目标进行电磁散射理论计算非常困难,而通过测试可以直观地获得目标的电磁散射特性数据,从而避开复杂的电磁仿真计算。与外场、紧缩场RCS测试方法相比,近年来得到广泛应用与发展的RCS近场测试方法在飞行器目标的散射特性测试方面具有效率高、成本低的优势。介绍了飞行器RCS测试评估方法,综述了国内外RCS近场测试技术研究的最新进展与工程应用实例,分析展望了飞行器RCS近场测试技术面临的机遇与挑战。
高超 , 巢增明 , 袁晓峰 , 白杨 . 飞行器RCS近场测试技术研究进展与工程应用[J]. 航空学报, 2016 , 37(3) : 749 -760 . DOI: 10.7527/S1000-6893.2015.0193
Radar cross section(RCS) measurement is the foundation of the stealth technology and target signature research. It is necessary to research the electromagnetic scattering properties of radar target as well as to design stealth weapon system. The theory and algorithm of electromagnetic scattering computation can be verified by RCS measurement; moreover, it is difficult to compute electromagnetic scattering of some complex objects, but the data can be obtained visually by RCS measurement. Compared with the outdoor and indoor RCS measurement, the RCS near field measurement is excellence in electromagnetic scattering test of electrically large complex objects. The method has lower cost and is more efficient. Concerning the fast, efficient and accurate testing of the electrically large complex objects' feature in actual engineering application, the key technique, realization and the applicability of RCS near field measurement are studied. Firstly, the methods of aircraft stealth test is introduced; secondly, the status quo of RCS near field measurement of numerical method, and the applied fields and problems to be solved of RCS near field measurement are presented; finally, the opportunities and challenges of the research of aircraft near field RCS measurement are briefly analyzed.
[1] 张红霞, 张丽星, 朱良成. 飞行器雷达隐身技术发展综述[J]. 国际航空, 2009(5):31-33. ZHANG H X, ZHANG L X, ZHU L C. Development of aircraft stealth technologies[J]. International Aviation, 2009(5):31-33(in Chinese).
[2] 黄培康. 雷达目标特征信号[M]. 北京:宇航出版社, 1993:13-14. HUANG P K. Radar target characteristic signal[M]. Beijing:China Astronautic Publishing House, 1993:13-14(in Chinese).
[3] 陈文. 隐身飞机的维修经验[J]. 国际航空, 1999(3):58-60. CHEN W. Stealth aircraft maintenance[J]. International Aviation, 1999(3):58-60(in Chinese).
[4] 王瑞凤, 杨宪江, 张彦朴. 解析武器装备的隐身问题[J]. 探测与控制学报, 2008, 30(B10):77-79. WANG R F, YANG X J, ZHANG Y P. Analysis on stealth technology of weapon equipment[J]. Journal of Detection & Control, 2008, 30(B10):77-79(in Chinese).
[5] 杨亮, 王亦菲, 张彦素, 等. 雷达吸波涂层损伤及修复研究进展[J]. 新技术新工艺, 2009(1):97-99. YANG L, WANG Y F, ZHANG Y S, et al. The repair technique and the damage of radar absorbing coatings and its research progress[J]. New Technology & New Process,2009(1):97-99(in Chinese).
[6] 许占显. 隐身飞机的质量探测与维修技术研究[J]. 航空维修与工程, 2012(1):68-70. XU Z X. Quality detection and maintenance technology research for stealth aircraft[J]. Aviation Maintenance & Engineering, 2012(1):68-70(in Chinese).
[7] 阎满存, 余勇, 李家垒, 等. 飞行器雷达隐身性能测试评估技术进展[J]. 战术导弹技术, 2015(2):33-36. YAN M C, YU Y, LI J L, et al. Development of testing and evaluating technique of the aircraft radar stealthy performance[J]. Tactical Missile Technology, 2015(2):33-36(in Chinese).
[8] REBECCA G. The radar game[M]. IRIS Virginia:Independent Research 1655 North Fort Myer Drive, 1998:25-26.
[9] 桑建华. 飞行器隐身技术[M]. 北京:航空工业出版社, 2013:182-196. SHANG J H. Low-observable technologies of aircraft[M]. Beijing:Beijing Aviation Industry Publishing House, 2013:182-196(in Chinese).
[10] 张福顺, 王胜, 毛乃宏. 用近场测量研究目标散射特性的一种新方法[J]. 西安电子科技大学学报, 1997, 24(2):217-220. ZHANG F S, WANG S, MAO N H. A new way for determining the targets scattering property by near field measurement[J]. Journal of Xidian University, 1997, 24(2):217-220(in Chinese).
[11] 何国瑜, 陈海波, 苗俊刚, 等. 近场散射与远场散射的链条关系式[J]. 微波学报, 2006, 22(4):1-4. HE G Y, CHEN H B, MIAO J G, et al. Chain relation of the near field scattering and far field RCS[J]. Journal of Microwaves, 2006, 22(4):1-4(in Chinese).
[12] 宁超, 张向阳, 肖志河. 隐身飞机散射特性综合分析研究[J]. 制导与引信, 2009, 30(2):34-38. NING C, ZHANG X Y, XIAO Z H. Comprehensive research study on scattering characteristics of stealth aircraft[J]. Guidance & Fuze, 2009, 30(2):34-38(in Chinese).
[13] 张麟兮, 李南京, 胡楚锋, 等. 雷达目标散射特性测试与成像诊断[M]. 北京:宇航出版社, 2009:61-67. ZHANG L X, LI N J, HU C F, et al. Radar target scattering characteristics measurement and image diagnostic[M]. Beijing:China Astronautic Publishing House, 2009:61-67(in Chinese).
[14] 高超, 袁晓峰, 肖志河, 等. 基于散射分布函数模型的近远场变换技术研究[J]. 电波科学学报, 2015, 30(2):371-377. GAO C, YUAN X F, XIAO Z H, et al. Near-field to far-field transformation based on reflectivity distribution model[J]. Chinese Journal of Radio Science, 2015, 30(2):371-377(in Chinese).
[15] 邢曙光, 吕晓德, 丁赤飚. 基于柱面扫描近场成像的RCS测试方法研究[J]. 雷达学报, 2015, 4(2):172-177. XING S G, LYU X D, DING C B. Research on radar cross section measurement based on near-field imaging of cylindrical scanning[J]. Journal of Radars, 2015, 4(2):172-177(in Chinese).
[16] 张晓玲, 陈明领, 廖可非, 等. 基于三维SAR成像的RCS近远场变换方法研究[J]. 电子与信息学报, 2015, 37(2):297-302. ZHANG X L, CHEN M L, LIAO K F, et al. Research on methods of targets' RCS near-field-to-far-field transformation based on 3-D SAR Imaging[J]. Journal of Electronics & Information Technology, 2015, 37(2):297-302(in Chinese).
[17] 张福顺, 焦永昌, 毛乃宏. 天线近场测试的综述[J]. 电子学报, 1997, 25(9):74-77. ZHANG F S, JIAO Y C, MAO N H. An outline of near field antenna measurement[J]. Journal of Electronics, 1997, 25(9):74-77(in Chinese).
[18] 李清杰, 钟鹰. 天线平面近场测量系统发展概况[J]. 空间电子技术, 2000(1):61-64. LI Q J, ZHONG Y. An outline of plane near field antenna measurement system[J]. Space Electronic Technology, 2000(1):61-64(in Chinese).
[19] 陈玉林, 于丁. 平面近场测试中截断误差对口径场的不确定性分析[J]. 电子科技, 2013, 26(9):131-133. CHEN Y L, YU D. Analysis of uncertainty due to truncation in planner near field holograms[J]. Electronic Science & Technology, 2013, 26(9):131-133(in Chinese).
[20] 张勇强, 刘舰, 张士选. 时域近场测试综述[J]. 电子科技, 2005(8):55-58. ZHANG Y Q, LIU J, ZHANG S X. Time-domain near-field measurement[J]. Electronic Sci.& Tech, 2005(8):55-58(in Chinese).
[21] 黄文涛, 陈旭. 平面近场中极化偏差的修正方法[J]. 火控雷达技术, 2014, 43(2):5-8. HUANG W T, CHEN X. Method of correcting polarization deviation in planar near filed[J]. Fire Control Radar Technology, 2014, 43(2):5-8(in Chinese).
[22] 夏德平, 刘雪晶. 全自适应数字阵列的近场测试[J].现代雷达, 2014, 34(6):88-91. XIA D P, LIU X J. Near-field measurement of all adaptive digital array[J]. Modern Radar, 2014, 34(6):88-91(in Chinese).
[23] 马红星, 陈玉林. 平面近场测试中探头补偿方法的研究[J]. 火控雷达技术, 2015, 44(1):71-74. MA H X, CHEN Y L. Probe compensation in near field plane measurement[J]. Fire Control Radar Technology, 2015, 44(1):71-74(in Chinese).
[24] 何国瑜, 卢才成, 洪家才, 等. 电磁散射的计算和测试[M]. 北京:北京航空航天大学出版社, 2006:163-167. HE G Y, LU C C, HONG J C, et al. Calculation and measurement of electromagnetic scattering[M]. Beijing:Beijing University of Aeronautics and Astronautics Publishing House, 2006:163-167(in Chinese).
[25] EDWARDS J, RYAN C, STOREY W. Measurement of bistatic near-zone radar cross-section[J]. Antennas and Propagation Society International Symposium, 1974, 12:174-177.
[26] COREY L E, JOY E B. On computation of electromagnetic fields on planar surfaces from fields specified on nearby surfaces[J]. IEEE Transactions on Antennas and Propagation, 1981, 29(2):402-404.
[27] DINALLO M A. Application of plane-wave scattering matrix theory of antenna interactions to near field radar cross section measurements[C]//Proceedings of the 6th Annual Meeting of the Antenna Measurement Techniques Association, 1984:9-14.
[28] COWN B J, RYAN C JR. Near field scattering measurements for determining complex target RCS[J]. IEEE Transaction on Antennas and Propagation, 1989, 37(5):576-585.
[29] MELIN. Measuring radar cross section at short distance[J]. IEEE Transaction on Antennas and Propagation, 1987, 35(8):991-996.
[30] FALCONER D G. Extrapolation of near-field RCS measurements to the far zone[J]. IEEE Transaction on Antennas and Propagation, 1988, 36(6):822-829.
[31] INASAWA Y, KURODAS, MORITA S, et al. Far-field RCS prediction from measured near-field data including metal ground bounce[C]//International Conference on Wireless Communications and Applied Computational Electromagnetics, 2005:913-916.
[32] ZHANG H Y. RCS calculation, transformations and comparisons under spherical and plane wave illumination[J]. Antennas and Propagation Society International Symposium AP-S.Digest, 1995, 4:1918-1921.
[33] GUPTA I J, BEALS M J, MOGHADDAR A. Data extrapolation for high resolution radar imaging[J]. IEEE Transactions on Antennas and Propagation, 1994, 42(11):1540-1545.
[34] BROQUETAS A, PALAU J, JOFRE L, et al. Spherical wave near-field imaging and radar cross section measurement[J]. IEEE Transactions on Antennas and Propagation, 1998, 46(5):730-735.
[35] VAUPEL T, EIBERT T F. Comparison and application of near field ISAR imaging techniques for far-field radar cross section determination[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(1):144-151.
[36] LAHAIE I J. Overview of an image-based technique for predicting far field radar cross-section from near field measurements[J]. IEEE Transactions on Antennas and Propagation, 2003, 45(6):159-169.
[37] COLEMAN C M, LAHAIE I J, RICE S A. Antenna pattern correction for the circular near field-to-far field transformation(CNFFFT)[C]//Proceedings of the 27th Annual Meeting of the Antenna Measurement Techniques Association, 2005:119-125.
[38] LAHAIE I J. Generalization of circular and linear image based NFFFT to off waterline collection[C]//Proceedings of the 35th Annual Meeting of the Antenna Measurement Techniques Association, 2013:138-144.
[39] OSIPOV A, KOBAYASHI H, SUZUKI H. An improved image-based circular near-field-to-far-field[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(2):989-993.
[40] TULGAR O, ARIF E. An improved back projection method with image segmentation for far-field/near-field SAR imaging and RCS extraction[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(6):2572-2584.
[41] ODENDAAL J W, JOUBERT J.Radar cross section measurements using near-field radar imaging[J]. IEEE Transactions on Instrumentation and Measurement, 1996, 45(6):948-954.
/
〈 | 〉 |