基于能量耗散率的低速扩压叶栅损失研究
收稿日期: 2014-11-05
修回日期: 2015-05-14
网络出版日期: 2015-06-30
基金资助
国家自然科学基金 (51207169, 51276797)
Energy loss in a low-speed compressor cascade with dissipation function
Received date: 2014-11-05
Revised date: 2015-05-14
Online published: 2015-06-30
Supported by
National Natural Science Foundation of China (51207169, 51276797)
针对无化学反应和热流输入的叶栅有黏不可压流模型,推导出能量耗散率的组分分解式,根据叶栅流场仿真结果进行分析简化,得到由轴向涡量、轴向阻力和剪切力组成的能量耗散率分解式。结合总压损失,分析了耗散各组分在前缘损失、叶表损失和通道损失中的主导因素:轴向涡量项反映旋涡结构,在通道损失中占主要部分,集中在通道涡和分离面附近;轴向阻力项反映扩压和叶表边界层转折造成的流动损失,在前缘损失和叶表损失中占主要部分,集中在叶栅前部的叶表边界层和主流区;剪切力项反映轴向截面速度不均匀性,在叶栅后部的叶表损失和通道损失中占主要部分,集中在叶表、端壁边界层和分离面附近。旋涡结构和耗散各组分分布特征揭示了叶栅通道中旋涡结构与能量耗散之间的分布关系,分离区并不是主要能量耗散区,高能量耗散区主要分布在叶表边界层(叶栅前部由轴向阻力项主导,后部由剪切力项中的υ(∂Vx/∂y)2项主导)、分离面附近(受剪切力项中的υ(∂Vx/∂y)2项和轴向涡量项影响)。大攻角情况下,叶栅通道损失显著增加,正攻角促使轴向涡量项的增长点提前,负攻角则使得叶表边界层的速度剪切加剧。
田思濛 , 吴云 , 张海灯 , 李应红 , 李军 . 基于能量耗散率的低速扩压叶栅损失研究[J]. 航空学报, 2015 , 36(10) : 3249 -3262 . DOI: 10.7527/S1000-6893.2015.0134
A viscous incompressible flow model in compressor cascade is set up without chemical reaction and heat input. Each of these components is resolved from the energy dissipation function with the derivation of the formula and simplified according to the simulation result in compressor cascade. These main factors are summarized as streamwise-vorticity item, axial resistance and shear force. Then, the axial characteristic of each component of the energy dissipation function is discussed in leading-edge loss, profile loss and passage loss with total pressure loss efficient. The streamwise-vorticity item, as the primary factor in passage loss to reflect the vortex structure in cascade, is concentrated near the passage vortex and separation surface. The axial resistance is concentrated on the boundary layer in the front of cascade passage, which is the key factor in leading-edge loss and profile loss to reflect the flow loss in diffusion and turning of boundary layer. The shear force item is concentrated on the separation surface and the boundary layer near the suction surface and endwall, which is the key factor in passage loss and profile loss to reflect the inhomogeneity of velocity. The relation between vortex structure and the energy dissipation is investigated with the distribution characteristic. One large dissipation zone is also found between main flow and corner separation region, which is influenced by υ(∂Vx/∂y)2 and the streamwise-vorticity item. Another is developed because of boundary layer near blades, which is influenced by flow resistance at the front part and υ(∂Vx/∂y)2 in the rear part. Governing factors on each axial plane are found while the key factor to energy dissipation is the shear item. The passage loss is significantly increased with high angle of attack, while the induction of streamwise-vorticity item is earlier in positive incidence and the shear force in boundary layer is higher in negative incidence.
[1] Ainley D G, Mathieson G C R. A method of performance estimation for axial flow turbines, R. M. No. 2974[R]. London: Her Majesty's Stationery Office, 1951.
[2] Dunham J, Came P M. Improvements to the Ainley-Mathieson method of turbine performance prediction[J]. Journal of Engineering for Power, 1970, 92(3): 252-256.
[3] Chibli H A, Abdelfattah S A, Schobeiri M T, et al. An experimental and numerical study of the effects of flow incidence angles on the performance of a stator blade cascade of a high pressure steam tubine[C]//Proceedings of ASME Turbo Expo: Power for Land, Sea and Air. New York: ASME, 2009.
[4] Langston L S, Nice M L, Hooper R M. Three dimensional flow within a turbine cascade passage[J]. Journal of Engineering for Power, 1977, 99(1): 21-28.
[5] Sieverding C H. Recent progress in the understanding of basic aspects of secondary flows in turbine blade passages[J]. Journal of Turbomachinery, 1985, 107(2): 248-257.
[6] Sharma O P, Butler T L. Predictions of endwall losses and secondary flows in axial flow turbine cascades[J]. Journal of Turbomachinery, 1987, 109(3): 229-236.
[7] Langston L S. Secondary flows in axial turbines: A review[J]. Annals of the New York Academy of Sciences, 2001, 93(4): 11-26.
[8] Zhou X, Han W J. Review on the development of turbine rectangle cascade vortex model[J]. Journal of Aerospace Power, 2001, 16(3): 199-204 (in Chinese). 周逊, 韩万金. 涡轮矩形叶栅中旋涡模型的进展回顾[J]. 航空动力学报, 2001, 16(3): 199-204.
[9] Wang H P, Oslon S J, Goldstein R J, et al. Flow visualization in a linear turbine cascade of high performance turbine blade[J]. Journal of Turbomachinery, 1997, 119(1): 1-8
[10] Zhang H X, Deng X G. Analytic studies for three dimensional steady separated flows and vortex motion[J]. Acta Aerodynamic Sinica, 1992, 10(1): 8-20 (in Chinese). 张涵信, 邓小刚. 三维定常分离流和涡运动的定性分析研究[J]. 空气动力学报, 1992, 10(1): 8-20.
[11] Gbadebo S A, Cumpsty N A, Hynes T P. Three-dimensional separations in compressors[J]. Journal of Turbomachinery, 2005, 127(2): 331-339.
[12] Zhong J J, Su S J, Wang Z Q. Analysis of topology and secondary flow structure analysis in compressor cascade[J]. Journal of Engineering Thermophysics, 1998, 34(1): 45-49 (in Chinese). 钟兢军, 苏先杰, 王仲奇. 压气机叶栅壁面拓扑和二次流结构分析[J]. 工程热物理学报, 1998, 34(1): 45-49.
[13] Zhang H L, Wang S T, Wang Z Q. Variation of vortex structure in a compressor cascade at different incidences[J]. Journal of Propulsion and Power, 2007, 23(1): 221-226.
[14] Liu Y M, Zhong J J, Wang B G, et al. Analysis of secondary flow structures of compressor cascade with different fences[J]. Journal of Aerospace Power, 2008, 23(7): 1240-1245 (in Chinese). 刘艳明, 钟兢军, 王保国, 等. 具有不同翼刀的压气机叶栅二次流结构分析[J]. 航空动力学报,2008, 23(7): 1240-1245.
[15] Zhang Y J, Wang H S, Xu J Z, et al. Research on topological vortex structure in compressor cascade[J]. Science in China Series E: Technological Sciences, 2009, 39(5): 1016-1025 (in Chinese). 张永军, 王会社, 徐建中, 等. 扩压叶栅中拓扑与旋涡结构的研究[J]. 中国科学E辑: 技术科学, 2009, 39(5): 1016-1025.
[16] Zhao X H, Wu Y, Li Y H, et al. Topological analysis of plasma flow control on corner separation in a highly loaded compressor cascade[J]. Acta Mechanica Sinica, 2012, 28(5): 1277-1286.
[17] Zhao X H, Wu Y, Li Y H, et al. Separation structure and plasma flow control on highly loaded compressor cascade[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(2): 208-219 (in Chinese). 赵小虎, 吴云, 李应红, 等. 高负荷压气机叶栅分离结构及其等离子体流动控制研究[J]. 航空学报, 2012, 33(2): 208-219.
[18] Liu H P, Chen H L, Yang X G, et al. Research on flow loss in low speed cascade with dissipation function[J]. Journal of Aerospace Power, 2011, 26(2): 289-296 (in Chinese). 刘华坪, 陈焕龙, 杨晓光, 等. 基于耗散函数的低速叶栅损失机理探讨[J]. 航空动力学报, 2011, 26(2): 289-296.
[19] Li X J, Chu W L, Zhang H G. The relations between second flow and flow loss on highly loaded axial compressor cascade[J]. Journal of Propulsion Technology, 2014, 35(7): 914-925 (in Chinese). 李相君, 楚武利, 张皓光. 高负荷轴流压气机叶栅二次流动与损失关联性探讨[J]. 推进技术, 2014, 35(7): 914-925.
[20] Zhao X H. Plasma flow control on highly loaded compressor cascade[D]. Xi'an: Air Force Engineering University, 2012 (in Chinese). 赵小虎. 高负荷压气机叶栅等离子体流动控制研究[D]. 西安: 空军工程大学, 2012.
[21] Zhang H D, Wu Y, Li Y H, et al. Investigation of vortex structure and flow loss in a high-speed compressor cascade[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9): 2438-2450 (in Chinese). 张海灯, 吴云, 李应红, 等. 高速压气机叶栅旋涡结构及其流动损失研究[J]. 航空学报, 2014, 35(9): 2438-2450.
[22] Tong B G, Yin X Y, Zhu K Q. Vortex dynamics[M]. Hefei: Press of University of Science and Technology of China, 1994: 16-17 (in Chinese). 童秉纲, 尹协远, 朱克勤. 涡运动理论[M]. 合肥: 中国科学技术大学出版社, 1994: 16-17.
[23] Wu J Z. Vorticity and vortex dynamics[M]. Berlin: Springer-Verlag, 2006: 532.
[24] Ding J, Chen S W, Xu H, et al. Control of flow separations in compressor cascade by boundary layer suction holes in suction surface[C]//Proceedings of ASME Turbo Expo: Turbine Technical Conference and Exposition. New York: ASME, 2013.
/
〈 | 〉 |