由裂纹嘴位移确定双悬臂梁试样应力强度因子的权函数解法
收稿日期: 2015-03-06
修回日期: 2015-05-27
网络出版日期: 2015-06-28
基金资助
国家自然科学基金(11402249)
Weight function method of determining double cantilever beam specimen stress intensity factor by crack mouth displacement
Received date: 2015-03-06
Revised date: 2015-05-27
Online published: 2015-06-28
Supported by
National Natural Science Foundation of China(11402249)
双悬臂梁(DCB)试样在材料的损伤容限性能评价,特别是应力腐蚀开裂门槛值(KISCC)测定中有重要应用。由于该试样几何的特殊性,一般采用与试样端部(裂纹嘴)有一定距离的特定位置裂纹面位移加载方式,然而该加载点的位移测量不但费时而且精度低,位移测量最方便和准确的位置是在DCB试样的裂纹嘴。通过对一种参考载荷条件的有限元计算,应用边缘裂纹的经典权函数解法,推导出DCB试样的权函数解析解,并与复变函数泰勒级数展开的权函数解法作了比较验证。在此基础上根据特定加载点的位移反算出相应位置均布应力加载下的应力强度因子,进而建立DCB试样在特定位置的裂纹面位移加载条件下的应力强度因子与裂纹嘴位移之间的关系式,为采用这种试样的材料损伤容限性能评价,特别是KISCC的高精度自动化测定奠定了基础。
童第华 , 吴学仁 , 刘建中 . 由裂纹嘴位移确定双悬臂梁试样应力强度因子的权函数解法[J]. 航空学报, 2016 , 37(2) : 609 -616 . DOI: 10.7527/S1000-6893.2015.0154
Double cantilever beam(DCB) specimen has important applications in materials' damage tolerance properties evaluation, especially for experimental determination of the stress corrosion cracking threshold(KISCC). Because of the particular specimen geometry, crack surface displacement loading at a specific position which is a certain distance away from the specimen edge(crack mouth) is commonly used. However, displacement measurement at the loading position is not only time-consuming but also inaccurate. For the DCB specimen, the most convenient and accurate displacement measurement location is at the crack mouth. In this paper, through finite element calculations for a reference load case and by using the classical weight function method for the edge crack geometry, analytical weight function for the DCB specimen is developed. Comparisons and verification have been conducted using the complex variable function Taylor series expansion weight function. Furthermore, from the specific loading point displacement, stress intensity factor for uniform stress loading at the corresponding crack surface location is obtained by inverse calculation. An analytical expression between the stress intensity factor and the crack mouth displacement is derived for DCB specimen subjected to the crack surface displacement loading at specific position. Thus, a solid foundation is laid for the evaluation of materials' damage tolerance properties using the DCB specimen, especially for KISCC measurement automation with high accuracy.
[1] DIETZEL W, SRINIVASAN P B, ATRENS A. Testing and evaluation methods for stress corrosion cracking(SCC) in metals[J]. Stress Corrosion Cracking:Theory and Practice, 2011:133-166.
[2] HU J, LUO R S, YAO C K, et al. Effect of annealing treatment on the stress corrosion cracking behavior of SiC whisker reinforced aluminum composite[J]. Materials Chemistry and Physics, 2001, 70(2):160-163.
[3] 金蕾, 蔡力勋. 基于双悬臂梁试样的柔度方法[J]. 机械强度, 2011, 33(4):534-537. JIN L, CAI L X. Compliance method based on double cantilever beam[J]. Journal of Mechanical Strength, 2011, 33(4):534-537(in Chinese).
[4] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 金属和合金的腐蚀 应力腐蚀试验 第6部分:恒载荷或恒位移下预裂纹试样的制备和应用:GB/T 15970.6-2007[S]. 北京:中国标准出版社, 2007:181-206. General Administration of Quality Supervise, Inspection and Quarantine of the people's Republic of China, Standardization Administration of the People's Republic of China. Corrosion of metals and alloys-Stress corrosion testing-Part 6:Preparation and use of pre-cracked specimens for tests under constant load or constant displacement:GB/T 15970.6-2007[S]. Beijing:China Standards Press, 2007:181-206(in Chinese).
[5] BUECKNER H F. Novel principle for the computation of stress intensity factors[J]. Zeitschrift Fuer Angewandte Mathematik & Mechanik, 1970, 50(9):529-546.
[6] RICE J R. Some remarks on elastic crack-tip stress fields[J]. International Journal of Solids and Structures, 1972, 8(6):751-758.
[7] WU X R, CARLSSON A J. Weight functions and stress intensity factor solutions[M]. Oxford:Pergamon Press Ltd., 1991:1-38.
[8] WU X R. Analytical wide-range weight functions for various finite cracked bodies[J]. Engineering Analysis with Boundary Elements, 1992, 9(4):307-322.
[9] FETT T, MUNZ D. Stress intensity factors and weight functions[M]. Davis, CA:Computational Mechanics Publications, 1997:289-291.
[10] COURTIN S, GARDIN C, BEZINE G, et al. Advantages of the J-integral approach for calculating stress intensity factors when using the commercial finite element software ABAQUS[J]. Engineering Fracture Mechanics, 2005, 72(14):2174-2185.
[11] JING Z, WU X R. Wide-range weight functions and stress intensity factors for arbitrarily shaped crack geometries using complex Taylor series expansion method[J]. Engineering Fracture Mechanics, 2015, 138:215-232.
/
〈 | 〉 |