电子与控制

考虑多边界状态约束的飞翼布局无人机姿态控制

  • 张波 ,
  • 周洲 ,
  • 祝小平
展开
  • 1. 西北工业大学 无人机特种技术重点实验室, 西安 710065;
    2. 西北工业大学 航空学院, 西安 710072;
    3. 西北工业大学 无人机研究所, 西安 710065
张波 男, 博士研究生。主要研究方向: 无人机动力学与控制。 Tel: 029-88451030 E-mail: hugh123go@mail.nwpu.edu.cn;周洲 女, 博士, 教授, 博士生导师。主要研究方向: 无人机总体设计。 Tel: 029-88451030 E-mail: zhouzhou@nwpu.edu.cn

收稿日期: 2015-03-18

  修回日期: 2015-06-15

  网络出版日期: 2015-06-18

基金资助

国防预研项目(513250201)

Attitude control of fly wing UAV with multi-boundary state constraints

  • ZHANG Bo ,
  • ZHOU Zhou ,
  • ZHU Xiaoping
Expand
  • 1. Science and Technology on UAV Laboratory, Northwestern Polytechnical University, Xi'an 710065, China;
    2. College of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    3. UAV Research Institute, Northwestern Polytechnical University, Xi'an 710065, China

Received date: 2015-03-18

  Revised date: 2015-06-15

  Online published: 2015-06-18

Supported by

National Defence Pre-research Foundation (513250201)

摘要

以大展弦比飞翼布局无人机为研究对象,针对强扰动环境下多边界状态约束时的飞行姿态控制问题,提出一种指令-控制律联合限制的全状态约束控制方法。该控制方法分别独立设计了指令边界限制器、过渡指令产生器和指令跟踪控制器3个部分。首先,基于无人机动力学特性设计的指令边界限制器,利用无人机的各个状态边界来限制姿态控制器的指令,实现了将非受控状态的约束问题转化为受控状态的约束问题;其次,基于"安排过渡过程"的思想并考虑约束限制环节,设计了过渡指令产生器,为无人机在线生成从当前姿态到期望跟踪姿态的过渡指令;最后,基于障碍Lyapunov函数和扩张状态观测器,设计了指令跟踪控制器,使无人机能够克服干扰且快速稳定地跟踪过渡指令。通过采用Lyapunov稳定性理论分析,该控制方法能够保证姿态跟踪误差收敛有界,且始终处于给定区间内部。仿真结果表明,该控制方法能够保证无人机飞行状态在不超出约束边界的同时,实现对姿态指令的准确跟踪。

本文引用格式

张波 , 周洲 , 祝小平 . 考虑多边界状态约束的飞翼布局无人机姿态控制[J]. 航空学报, 2015 , 36(9) : 3105 -3115 . DOI: 10.7527/S1000-6893.2015.0183

Abstract

To solve the flight attitude control problem under multi-boundary state constraints and strong disturbance, a joint command-control law limiting full state constraint control approach is proposed, with a high-aspect-ratio flying wing UAV as the research model. This control approach consists of three independent parts: command limiter, reference generator and command tracker. Firstly, based on the aircraft dynamic characteristics, the command limiter utilizes each state bound to restrict attitude command. In this way, the constraint problem of non-controlled states is converted into a constraint problem of controlled states. Secondly, the reference generator provided a command trajectory from the current attitude to the desired attitude. This online process is achieved according to the idea of "transition process arranging" and considering the constraints. Finally, the command tracker is designed based on barrier Lyapunov function and extended state observer, which enable the UAV overcoming disturbance and tracking command trajectory quickly and stably. The stability is analyzed by means of Lyapunov theory. Attitude tracking error is proved to be bounded-convergent and always remain in the given region. Simulation results show that UAV tracks the desired attitude command accurately. Moreover, the established controller can prevent flight states from exceeding limitation.

参考文献

[1] Zhang X P, Chen Z J. A design method on limiter for angle of attack and normal acceleration[J]. Acta Aeronautica et Astronautica Sinica, 1995, 16(1): 87-91 (in Chinese). 张喜平, 陈宗基. 迎角过载边界限制器的设计方法[J]. 航空学报, 1995, 16(1): 87-91.
[2] Falkena W, Borst C, Chu Q P, et al. Investigation of practical flight envelope protection systems for small aircraft[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(4): 977-988.
[3] Yavrucuk I, Prasad J V R, Unnikrishnan S. Envelope protection for autonomous unmanned aerial vehicles[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(1): 248-261.
[4] Yavrucuk I, Prasad J V R. Online dynamic trim and control limit estimation[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(5): 1647-1656.
[5] Wang S, Zhan H. The safe-set of aircraft and maneuverability envelope protection[J]. Journal of Northwestern Polytechnical University, 2014, 32(4): 523-528 (in Chinese). 王爽, 詹浩. 飞行最大可控边界集及其机动边界保护控制[J]. 西北工业大学学报, 2014, 32(4): 523-528.
[6] Sahani N A, Horn J F. Command limiting for full-envelope guidance and control of rotorcraft, AIAA-2005-6348[R]. Reston: AIAA, 2005.
[7] Kong L L. The envelope protection resisting strong disturbance based on fly wing platform[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009 (in Chinese). 孔琳玲. 飞翼飞行平台强扰动下的飞行边界控制技术[D].南京: 南京航空航天大学, 2009.
[8] Blanchini F. Set invariance in control[J]. Automatica, 1999, 35(11): 1747-1767.
[9] Mayne D Q, Rawlings J B, Rao C V, et al. Constrained model predictive control: Stability and optimality[J]. Automatica, 2000, 36(6): 789-814.
[10] Kogiso K, Hirata K. Reference governor for constrained systems with time-varying references[J]. Robotics and Autonomous Systems, 2009, 57(3): 289-295.
[11] Ye H, Chen M, Wu Q X. Envelope protection control for maneuver flight based on multi-regulator sliding mode control switch approach[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(12): 3358-3370 (in Chinese). 叶辉, 陈谋, 吴庆宪. 基于多滑模调节器切换的机动飞行边界保护控制[J]. 航空学报, 2014, 35(12): 3358-3370.
[12] Ngo K B, Mahony R, Jiang Z. Integrator backstepping design for motion systems with velocity constraint[C]//Proceedings of the 5th Asian Control Conference. Piscataway, NJ: IEEE Press, 2004: 141-146.
[13] Ngo K B, Mahony R, Jiang Z. Integrator backstepping using barrier functions for systems with multiple state constraints[C]//Proceedings of the 44th IEEE Conference on Decision and Control. Piscataway, NJ: IEEE Press, 2005: 8306-8312.
[14] Tee K P, Gea S S, Tay E H. Barrier Lyapunov functions for the control of output-constrained nonlinear systems[J].Automatica, 2009, 45(4): 918-927.
[15] Ren B, Ge S S, Tee K P, et al. Adaptive neural control for output feedback nonlinear systems using a barrier Lyapunov function[J]. IEEE Transactions on Neural Networks, 2010, 21(8): 1335-1339.
[16] Tee K P, Ge S S, Li H, et al. Control of nonlinear systems with time-varying output constraints[C]//Proceedings of IEEE International Conference on Control and Automation. Piscataway, NJ: IEEE Press, 2009: 524-529.
[17] Tee K P, Ren B B,Ge S S. Control of nonlinear systems with time-varying output constraints[J]. Automatica, 2011,47(11): 2511-2516.
[18] Tee K P, Ge S S. Control of nonlinear systems with full state constraint using a barrier Lyapunov function[C]//Proceedings of the 48th IEEE Conference on Decision and Control. Piscataway, NJ: IEEE Press, 2009: 8618-8623.
[19] Tee K P, Ge S S. Control of nonlinear systems with partial state constraints using a barrier Lyapunov function[J].International Journal of Control, 2011, 84(12): 2008-2023.
[20] Waszak M R, Schmidtf D K. Flight dynamics of aeroelastic vehicles[J]. Journal of Aircraft, 1988, 25(6): 563-571.
[21] Stengel R F. Flight dynamics[M]. Princeton: Princeton University Press, 2004: 49-51.
[22] Huang H P, Wan H, Han J Q. Arranging the transient process is an effective method improved the "robustness, adaptability and stability" of closed-loop system[J]. Control Theory and Applications, 2001, 18(Suppl.): 89-94 (in Chinese). 黄焕袍, 万晖, 韩京清. 安排过渡过程是提高闭环系统"鲁棒性、适应性和稳定性"的一种有效方法[J]. 控制理论与应用, 2001, 18(Suppl.): 89-94.
[23] Han J Q. Active disturbance rejection control technique[M]. Beijing: National Defense Industry Press, 2008: 255-263 (in Chinese). 韩京清. 自抗扰控制技术[M]. 北京: 国防工业出版社, 2008: 255-263.
[24] Huang Y, Han J Q. Analysis and design of nonlinear continuous second order extended state observer[J]. Chinese Science Bulletin, 2000, 45(13): 1373-1379 (in Chinese). 黄一, 韩京清. 非线性连续二阶扩张状态观测器的分析与设计[J]. 科学通报, 2000, 45(13): 1373-1379.
[25] Zhu Z, Xu D, Liu J, et al. Missile guidance law based on extended state observer[J]. IEEE Transactions on Industrial Electronics, 2013, 60(12): 5882-5891.
[26] Xiao Y L, Jin C J. Flight principles in atmospheric disturbance[M]. Beijing: National Defense Industry Press, 1993: 77-84 (in Chinese). 肖亚伦, 金长江. 大气扰动中的飞行原理[M]. 北京: 国防工业出版社, 1993: 77-84.

文章导航

/