流体力学与飞行力学

合成双射流控制NACA0015翼型大攻角流动分离试验研究

  • 李玉杰 ,
  • 罗振兵 ,
  • 邓雄 ,
  • 孙健 ,
  • 沈铮
展开
  • 1. 国防科学技术大学 航天科学与工程学院, 长沙 410073;
    2. 中航工业空气动力研究院, 哈尔滨 150000;
    3. 92853部队, 葫芦岛 125109
李玉杰,男,硕士研究生。主要研究方向:合成双射流主动流动控制技术。E-mail:13080508742@163.com;罗振兵,男,博士,教授。主要研究方向:流动控制技术、组合推进技术、临近空间飞行器技术。Tel:0731-84573099,E-mail:luozhenbing@163.com

收稿日期: 2015-04-10

  修回日期: 2015-06-15

  网络出版日期: 2015-06-16

基金资助

国家自然科学基金(11002161,11372349);全国优秀博士学位论文作者专项资金(201058);航空科学基金(20121288002);国防科学技术大学杰出青年基金(2013-CT-01)

Experimental investigation on flow separation control of stalled NACA0015 airfoil using dual synthetic jet actuator

  • LI Yujie ,
  • LUO Zhenbing ,
  • DENG Xiong ,
  • SUN Jian ,
  • SHEN Zheng
Expand
  • 1. College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China;
    2. AVIC Aerodynamics Research Institute, Harbin 150000, China;
    3. 92853 Troops, Huludao 125109, China

Received date: 2015-04-10

  Revised date: 2015-06-15

  Online published: 2015-06-16

Supported by

National Natural Science Foundation of China(11002161, 11372349);Foundation for the Author of National Excellent Doctor Dissertation of China(201058);Aeronautical Science Foundation of China(20121288002);Foundation for the Excellent Youth of NUDT(2013-CT-01)

摘要

设计了一种卧式合成双射流激励器(DSJA),并对其在翼展中段控制NACA0015翼型大攻角流动完全分离进行试验研究,分析了合成双射流激励器两射流出口位置及射流能量对控制机翼流动分离的影响规律。结果表明:合成双射流激励器对机翼大攻角流动分离具有很强的控制能力,可显著提高机翼流动分离攻角;合成双射流激励器两射流出口相对分离点的位置是影响控制效果的重要参数;合成双射流激励器两出口任一出口位于分离点之前,且越靠近分离点,其对边界层分离的控制效果越好,并且当分离点位于合成双射流激励器两出口之间,且离第一出口位置较近时,合成双射流"接力"控制机翼分离的效果更加明显;与合成射流"单射流"相比,合成双射流"两射流"对分离点位置的有效控制区域明显增大。此外,提高合成双射流激励器的射流能量,其控制机翼流动分离的能力提高。

本文引用格式

李玉杰 , 罗振兵 , 邓雄 , 孙健 , 沈铮 . 合成双射流控制NACA0015翼型大攻角流动分离试验研究[J]. 航空学报, 2016 , 37(3) : 817 -825 . DOI: 10.7527/S1000-6893.2015.0170

Abstract

A horizontal dual synthetic jet actuator(DSJA) is designed. And experimental investigation on the separation flow control of stalled NACA0015 airfoil at high angle of attack is carried out with dual synthetic jet actuator. Characteristics of the flow separation control under DSJA with different jet locations and different jet energy are investigated. Results indicate that the stall angle is delayed by introducing DSJA. Jet locations of DSJA play a critical role. It is interesting that the control efficiency will be excellent when any of the dual synthetic jets locates in front of and is close to the unexcited separation point. When the separation points are between two exports of DSJA and the first export is close to the separation point, the effect will be better for DSJA to control airfoil separation. It suggests the DSJA has stronger ability than the synthetic jet actuator controlling flow separation. What's more, the ability of dual synthetic jets control flow separation can be increased by increasing jet energy.

参考文献

[1] LIGHTHILL J. Acoustic streaming[J]. Journal of Sound and Vibration, 1978, 61(3):391-418.
[2] JAMES R D, JACOBS J W, GLEZER A. A round turbulent jet produced by an oscillating diaphragm[J]. Physics of Fluids, 1996, 8(9):2484-2495.
[3] SMITH B L, GLEZER A. The formation and evolution of synthetic jets[J]. Physics of Fluids, 1998, 10(9):2281-2297.
[4] GLEZER A, AMITAY M. Synthetic jets[J]. Annual Review of Fluid Mechanics, 2002, 34:503-529.
[5] 罗振兵, 夏智勋. 合成射流技术及其在流动控制中应用的进展[J]. 力学进展, 2005, 35(2):221-234. LOU Z B, XIA Z X. Advances in synthetic jet technology and applications in flow control[J]. Advances in Mechanics, 2005, 35(2):221-234(in Chinese).
[6] CATTAFESTA L, SHEPLAK M. Actuators for active flow control[J]. Annual Review of Fluid Mechanics, 2011, 43:247-272.
[7] AMITAY M, GLEZER A. Role of actuation frequency in controlled flow reattachment over a stalled airfoil[J]. AIAA Journal, 2002, 40(2):209-216.
[8] GILARRANZ J L, TRAUB L W, REDINIOTIS O K. A new class of synthetic jet actuators, Part Ⅱ:Application to flow separation control[J]. Journal of Fluids Engineering, 2005, 127(2):377-387.
[9] FARNSWORTH J A N, VACCARO J C, AMITAY M. Active flow control at low angles of attack:Stingray unmanned aerial vehicle[J]. AIAA Journal, 2008, 46(10):253-254.
[10] 郝书礼, 乔志德. 合成射流用于翼型分离流动控制的研究[J]. 西北工业大学学报, 2006, 24(4):528-531. HAO S L, QIAO Z D. Maximizing the effect of synthetic jet on airfoil separation flow control[J]. Journal of Northwestern Polytechnical University, 2006, 24(4):528-531(in Chinese).
[11] 韩忠华, 乔志德, 宋文萍. 零质量射流推迟翼型失速的数值模拟[J]. 航空学报, 2007, 28(5):1040-1046. HAN Z H, QIAO Z D, SONG W P. Numerical simulation of active flow control to airfoil stall using local synthetic jet[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(5):1040-1046(in Chinese).
[12] 张攀峰, 王晋军. 合成射流控制NACA0015翼型大攻角流动分离[J]. 北京航空航天大学学报, 2008, 34(4):443-446. ZHANG P F, WANG J J. Numerical simulation on flow control of stalled NACA0015 airfoil with synthetic jet actuator in recirculation region[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(4):443-446(in Chinese).
[13] 顾蕴松, 李斌斌, 程克明. 斜出口合成射流激励器横流输运特性与边界层控制[J]. 航空学报, 2010, 31(2):321-327. GU Y S, LI B B, CHENG K M. Cross flow transfer characteristics of a new beveled synthetic jet actuator and its applications to boundary layer control[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(2):321-327(in Chinese).
[14] MONIR H E, TADJFAR M, BAKHTIAN A. Tangential synthetic jets for separation control[J]. Journal of Fluids and Structures, 2014, 45:50-65.
[15] 许晓平, 周洲. 飞翼布局无人机微射流控制参数影响数值模拟[J]. 航空学报, 2014, 35(12):3293-3303. XU X P, ZHOU Z. Numerical simulation of micro-jet flow control parameters for flying-wing UAV[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(12):3293-3303(in Chinese).
[16] 陈萍萍, 乔渭阳. 边界层吸气对压气机叶栅角区分离损失的控制[J]. 航空学报, 2014, 35(11):3000-3011. CHEN P P, QIAO W Y. Boundary layer suction on hub-corner separation loss in a linear compressor cascade[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11):3000-3011(in Chinese).
[17] 罗振兵, 夏智勋, 刘冰. 单膜双腔双口合成射流激励器:ZP200610031334.0[P]. 2006-08-16. LUO Z B, XIA Z X, LIU B. A synthetic jet actuator with a single diaphragm, dual cavities and exits:ZP200610031334.0[P]. 2006-08-16(in Chinese).
[18] LOU Z B, XIA Z X, LIU B. New generation of synthetic jet actuator[J]. AIAA Journal, 2006, 43(10):2418-2419.
[19] OYARZUN M A, CATTAFESTA L. Design and optimization of piezoceramic zero-net mass-flux actuators:AIAA-2010-4414[R]. Reston:AIAA, 2010.
[20] 王林. 合成双射流激励器流场特性及其控制机翼流动分离研究[D]. 长沙:国防科学技术大学, 2009. WANG L. Flow characteristics of dual synthetic jets actuator and its application on an airfoil separate flow control[D]. Changsha:National University of Defense Technology, 2009(in Chinese).
[21] 王林, 罗振兵, 夏智勋. 合成双射流控制翼型分离流动的数值模拟[J]. 空气动力学学报, 2012, 30(3):353-357. WANG L, LUO Z B, XIA Z X. Numerical evaluation on areodynamics of typical hypersonic sonfigurations for hypersonic flight[J]. Acta Aerodynamica Sinica, 2012, 30(3):353-357(in Chinese).
[22] 罗振兵. 合成射流/合成双射流机理及其在射流矢量控制和微泵中的应用研究[D]. 长沙:国防科学技术大学, 2006. LUO Z B. Principle of synthetic jet and dual synthetic jets, and their applications in jet vectoring and micropump[D]. Changsha:National University of Defense Technology, 2006(in Chinese).

文章导航

/